
GoAT: File Geolocation via Anchor Timestamping

ABSTRACT
Blockchain systems are rapidly gaining traction. Decentralized stor-

age systems like Filecoin are a crucial component of this ecosystem

that aim to provide robust file storage through a Proof of Replication

(PoRep) or its variants. However, a PoRep actually offers limited

robustness. Indeed if all the file replicas are stored on a single hard

disk, a single catastrophic event is enough to lose the file.

We introduce a new primitive, Proof of Geo-Retrievability or in
short PoGeoRet, that enables proving that a file is located within

a strict geographic boundary. Using PoGeoRet, one can trivially

construct a PoRep by proving that a file is in several distinct geo-

graphic regions. We define what it means for a PoGeoRet scheme to

be complete and sound, in the process making important extensions

to prior formalism.

We propose GoAT, a practical PoGeoRet scheme to prove file

geolocation. Unlike previous geolocation systems that make strong

assumptions about storage providers and require dedicated anchors,

GoAT makes minimal assumptions and uses existing timestamp-

ing servers on the internet as geolocation anchors. GoAT inter-

nally uses a communication-efficient Proof-of-Retrievability (PoRet)

scheme in a novel way to achieve constant-size PoRet-component

in its proofs.

We validate GoAT’s practicality by conducting an initial mea-

surement study to find usable anchors and perform a real-world

experiment. The results show that a significant fraction of the in-

ternet can be used as anchors and that GoAT achieves geolocation

radii as low as 500km.

1 INTRODUCTION
Decentralized systems are a rapidly expanding form of computing

infrastructure. Blockchain systems in particular have enjoyed con-

siderable recent popularity and constitute a $2 trillion market at the

time of writing [3]. Many decentralized applications, ranging from

non-fungible tokens (NFT) [22] to retention of blockchain state [5],

require a reliable bulk storage medium. As blockchains have lim-

ited innate storage capacity, there is thus a growing demand for

purpose-built decentralized storage systems, of which a number

have arisen, such as IPFS [15], Filecoin [33], Sia [45], Storj [34], etc.

Like today’s cloud storage services (e.g., Amazon S3 [11]), decen-

tralized storage systems typically achieve robustness by replicating

files. With this approach, even if some replicas become unavailable,

others can be used to fetch files. To help ensure trustworthy storage

of replicas, decentralized file systems require storage providers to

prove retention of file replicas. Most notably, Filecoin [17] uses a

protocol called Proof of Replication (PoRep) [24] for this purpose,

while related systems such as Sia, Storj, etc., use similar techniques.
1

While a PoRep or related proof system can prove the existence

of multiple copies of a file, however, its robustness assurances are

limited. This is because a PoRep does not ensure that file replicas

1
Filecoin has the most flexible yet most computationally expensive approach

among these systems: Its PoRep proof system works for plaintext files, while other

decentralized storage systems only work assuming distinct ciphertext file replicas.

Figure 1: A prover and a Roughtime anchor are situated 300km
apart. GoAT’s region of uncertainty is a circle of radius 2000km
(purple) proving that the replica is in the east half ofNorthAmerica.

reside on independent devices or systems. If all file replicas are stored
on the same hard disk, for example, damage to that one device can

destroy the file.

In this paper, we explore an alternative approach to building

PoReps: proving that file replicas reside in distinct geographical re-
gions. For example, one may wish to prove that three replicas of a

file are present in the United States, Europe, and Asia respectively.

Such proof automatically implies the property ensured by a PoRep,

namely the existence of three distinct replicas of the file. It also

ensures much stronger properties than a proof of replication alone,

namely that file replicas are stored on distinct devices and in distinct
physical locations. These additional properties imply that the file

can survive device failures, destructive local events (e.g., natural

catastrophes), etc. Thus the ability to prove replica geolocation

can greatly improve robustness in decentralized storage systems.

Geolocation-based proofs can also incur substantially lower resource
costs than techniques like PoReps, as we show in this paper.

Beyond PoReps, proving storage location is useful in other set-

tings. For example it can help prove compliance with laws specify-

ing localized storage of certain forms of data, e.g., [28].
2
It can also

be used by CDN providers to prove that they are serving data from

geographically distributed locations according to a claimed policy.

The goal of our work is, specifically, to build protocols to prove

that a given file replica is stored within a strictly-bounded geograph-

ical region. Our main building block for these protocols is a primi-

tive we call a Proof of Geo-Retrievability (PoGeoRet). A PoGeoRet in-

volves a single prover proving to a number of verifiers that it holds a

file replica in a given geographical region. To ensure the practicality

of our PoGeoRet designs we consider here, we focus on proofs in-

volving relatively large geographical regions (e.g., thousand-mile di-

ameter), which suffices for key applications such as file replication.

We introduce a formal definition of PoGeoRets in this paper,

and propose, implement, and experimentally validate a PoGeoRet

2
Some nations only require that a copy of data be stored locally whereas more stricter

laws make transferring data abroad illegal [28]. Our techniques suffice for the former

but the latter would additionally require the use of trusted hardware.

1

system called GoAT. GoAT creates publicly verifiable file-replica

geolocation proofs. GoAT proofs can thus be consumed by a mul-

tiplicity of verifiers and can be used to construct a system that

ensures the presence of file replicas in desired locations even in the

presence of some dishonest verifiers.

Previous works have explored internet-resource geolocation—

both servers [32, 46] and files [18, 47]—but operate in benign cloud

settings, e.g., assume cloud providers have normal network con-

nectivity (even between two datacenters [18]), verifiers are close to

providers, and/or files are stored in cloud systems whose locations

are known a priori, etc. These assumptions make such approaches

unsuitable for decentralized settings of the type we explore here.

GoAT requires none of these assumptions.

1.1 The Anchor Model
To avoid the undesirable assumptions of previous geolocation sys-

tems, we explore a model for GoAT that relies on a collection of

servers called anchors.
An anchor is a server with a publicly announced location that

emits digitally signed timestamps on queries. That is, an anchor has

an API that returns the current time along with a signature over

the time and any value sent by a client.

Anchors used in GoAT need not be in close proximity to storage

service providers. Additionally, the main job of an anchor is not
to geolocate entities directly, but only to provide timestamps. It is

possible to handle a local minority of misbehaving anchors.

Anchors can be purpose-built for aGoAT instance. We also show,

however, that it is possible to use existing, unmodified servers, e.g.,
TLS 1.2 or Roughtime [9] servers, as anchors. Thus it is possible to

realize GoAT with today’s internet infrastructure.

1.2 Proving Geolocation
In GoAT, a prover must prove proximity to an anchor. The starting

point for GoAT is a simple, well known technique: The prover pings
the anchor successively to get two timestamps 𝑡1, 𝑡2. If the prover

is indeed situated close to the anchor, then the timestamps will not

differ by much, i.e., 𝑡2 − 𝑡1 < Δ for some small Δ.3 Identification

of the prover is done by signing the first anchor response with

the prover’s private key and using the signature as a nonce in the

second ping. This form of chaining is also crucial to ensure that the

two anchor pings are indeed made successively.

The two anchor responses together form a proof that the prover

is situated close to the anchor. The signature on these responses

makes the proof publicly verifiable. Assuming that the anchor lo-

cation is known, it becomes a proof of location for the prover.

GoAT requires that a majority of anchors situated near a given

location be honest. Intuitively, this localization is necessary since

each anchor is only useful in places close to its location.

Realizing proofs of geolocation: Several challenges arise in ba-

sic proofs of geolocation. Existing anchors pose one key challenge.

TLS 1.2 servers, for instance, only provide second-level timestamps,

which is insufficient as network round-trip times are on the order

of milliseconds. We address this challenge by introducing a tech-

nique for amplification: Instead of pinging twice, a prover pings the

3
This is not always true due to network abnormalities. GoAT accounts for them with

a conservative network model introduced later.

anchor repeatedly with interrelated challenges over an extended

time interval, e.g., a full second. Another challenge is identifying

usable anchors. Many TLS 1.2 servers, for instance, do not return

accurate time or have a unique location, needed for a prover to

prove geolocation. We conduct an initial measurement study of the

Alexa top 1M list to identify a broad network of usable anchors.

Another important practical concern is handling network volatil-

ity. We provide an empirical framework to calibrate the time thresh-

old Δ for the prover to assert proximity to an anchor. The frame-

work depends on factors like expected network quality and anchor

characteristics, such as how quickly a given anchor responds. Our

approach helps minimize false rejection rates, particularly given

that in our protocols a brief period of good network connectivity

(say few seconds) amidst a longer period of time (say hours) suffices

for an honest prover to prove file replica possession successfully.

1.3 Geolocating Files: GoAT
To build on basic geolocation proofs and realize GoAT, our strategy
is to interleave into the prover’s anchor pings a Proof of Retrievabil-

ity (PoRet) [31, 40]. A PoRet proves storage of a full file replica. In

isolation, though, it proves nothing about a file’s storage location.

Thus the need to integrate it with a geolocation scheme.

Making GoAT efficient: A key challenge is reducing GoAT’s com-

munication complexity. Due to a combination of amplification,

proof accumulation over several epochs and different anchors, the

proof sizes quickly blow up, even with use of the communication-

efficient Shacham-Waters (SW) PoRet [40]. Through incorporation

of vector commitments and compression across proof instances, we

manage to compress the size of PoRet-related proofs even across

a sequence of pings to just a few bytes.

Yet another challenge in realizing GoAT is minimizing the time

taken for the operation between the two anchor pings. Slow operation—

as caused by computing a full PoRet proof—degrades geolocation

accuracy. We therefore introduce techniques to compute a fast

PoRet commitment to the randomness in a SW proof between the

two pings, without actually computing the proof. As we will show

later, the introduction of PoRet commitments is crucial for geolo-

cation, improving accuracy by as much as 20x in some cases.

Figure 1 illustrates GoAT’s file geolocation capabilities.

Defining PoGeoRet: A theoretical contribution of our work is

in defining what it means for a PoGeoRet scheme to be secure.

The formalization for PoGeoRet soundness is similar in spirit to

that for PoRet but leads to interesting new subtleties. Intuitively,

a PoGeoRet is sound if acceptance by a verifier means that a file

𝐹 can be extracted from the prover. The key difference for a PoGe-

oRet is that successful extraction must now be possible from the
target location. To capture the notion of file location, we introduce

a location-specific commitment oracle. This oracle models the PoRet

commitment function and tracks queries made to it from within the

target region. We say that a PoGeoRet is sound if the file fragments

seen by the commitment oracle are enough to recompute the file.

The choice of PoRet commitment function leads to two variants

of GoATwith a performance, security assumption tradeoff between

them. GoAT-H uses a hash function to commit and admits a secu-

rity proof under common assumptions. GoAT-P uses homomorphic

2

commitments to achieve at least 3x smaller proof sizes but relies

on a new knowledge assumption closely related to KEA1 [14].

Contributions: Our contributions are summarized as follows:

(1) New Security Definitions and Modeling: We define what it means

for a PoGeoRet scheme to be complete and sound, the latter

requiring important extensions to the classic PoRet security

experiments (Sec. 3). We also introduce practical model variants

for PoRet and PoGeoRets of potential independent interest that

facilitate bootstrapping using existing servers and fast encoding.

(2) GoAT: We introduce our Proof of Geo-Retrievability (PoGeoRet)

protocol GoAT in Sec. 4. GoAT leverages the Shacham-Waters

PoRet and timestamping anchors. We explore optimizations to

reduce the size of GoAT proofs, achieving constant-size PoRet-

component in our proofs. We prove GoAT security in App. D.

(3) Implementation and Evaluation: To demonstrate GoAT’s prac-
ticality we prototype GoAT-P and run a small real-world ex-

periment using 10 TLS / Roughtime anchors (5 each in the US

and UK) for over a week. GoAT’s prove and verify protocols

execute in just a few seconds, with proof sizes of a few hundred

KB. We show geolocation radii lower than 1000km, even tighter

than required for applications like file replication (Sec. 5).

Sec. 6 contains related work. We have also released GoAT as an

open-source tool.

2 PRELIMINARIES
2.1 Authenticated time protocols
We are interested in time protocols that are authenticated, i.e., the

timestamp must be digitally signed. Two main options exist today.

2.1.1 TLS 1.2. Some TLS 1.2 servers [23] embed the current time

in seconds into the first 8 bytes of the “server random” value. This

value is then signed and sent to the client as part of TLS 1.2 key ex-

change. The receiving party verifies the signature using the server’s

certificate. This trick works for Diffie-Hellman based key-exchange,

including elliptic-curve variants, and for RSA as well.

This functionality has always been an informal practice, and is

not specified in the TLS 1.2 RFC, but is widely practiced—we found

about 1/5 of top 500 hosts in Alexa list supported this technique.

Finally, this method does not work with TLS 1.3 as the specification

specifically deprecates it. In practice though, TLS 1.3 adoption is

only growing slowly. And TLS 1.2 is expected to be supported by

most websites in the near future, e.g., in April 2021, 99.4% of Alexa

top 1M sites [1] were found to support TLS 1.2 [38].

2.1.2 Roughtime. Roughtime [9] is a recently developed authen-

ticated time protocol. At the time of writing, we are aware of four

providers hosting Roughtime—Cloudflare [37], Google, Chainpoint

and int08h. Roughtime servers provide a highly precise timestamp

in µs signed with a fast signature scheme (EdDSA). As the name

“Roughtime” suggests, the protocol is only designed to provide a

roughly accurate time, say within 10 seconds of the true time, unlike

say NTP. Note that GoAT does not need accurate absolute time.

2.2 Proof of Retrievability
Proof of Retrievability [31] schemes enable a prover to prove knowl-

edge of a complete file replica in a communication-efficient manner.

For GoAT, we require a publicly verifiable PoRet scheme. Merkle-

tree (MT) based variants [31] and Shacham-Waters (SW) [40] are

the two main choices.

Figure 10 shows the API for a PoRet scheme. The file owner

begins by generating a key pair. The setup protocol takes an input

file 𝐹 and outputs a transformed file 𝐹 ∗ which contains the file

plus erasure-coding data and some extra data to support the proofs.

The setup protocol also outputs a unique handle 𝜂 for the file and

some public parameters pp. In a typical PoRet system, pp is posted

publicly so that any party can verify a proof of retrievability.

A special feature of GoAT is the introduction of an additional

functionality in a PoRet. This functionality, called PoRet.Commit,
commits to randomness for use in a (future) PoRet proof. We in-

troduce PoRet.Commit to enable fast prover interaction with a

timestamping service, and thus require that it be: (1) quickly com-

putable (within a fewmilliseconds), and (2) compact. We specify our

construction of PoRet.Commit later. The PoRet.Commit function
is the only addition we make to the PoRet scheme used in GoAT,
which otherwise remains unmodified.

3 FORMALIZING PROOFS
OF GEOGRAPHIC RETRIEVABILITY

A Proof-of-Geographic-Retrievability (PoGeoRet) scheme includes

three parties
4
: a user (U) that owns a file 𝐹 , a storage provider or

prover (P) that commits to storing 𝐹 for a specified duration at a

specified location, and an auditor or verifier (V) that verifies the
storage claims of storage providers.

Desired properties: Like any security protocol, a PoGeoRet must

satisfy two basic properties: completeness and soundness. Complete-

ness means that the PoGeoRet scheme must succeed for any honest

prover storing the file in a correct location. Soundness means that

any dishonest prover either not storing the complete file or storing

it outside a permitted geographic boundary should be detected with

high probability.

Section structure:We start with preliminaries in Sec. 3.1, explain-

ing how a PoGeoRet leverages an underlying PoRet. We provide

the adversarial model in Sec. 3.2, and then present the basic mod-

eling behind our formal definitions. We formalize completeness

in Sec. 3.3 and soundness in Sec. 3.4. Finally, in Sec. 3.5, we discuss

modifications to our security model and definitions that we believe

reflect requirements in real-world use cases, such as support for

fast file encoding and easy bootstrapping.

3.1 Preliminaries
Protocol structure: The API for a PoGeoRet scheme is in Fig. 2.

We assume in this API and throughout this section that a PoGe-

oRet scheme internally leverages a PoRet scheme. In what follows,

where clear from context, we drop PoGeoRet from our notation,

e.g., use Setup to denote PoGeoRet.Setup.
We define a PoGeoRet for a general setting in which a target file

𝐹 is stored as a publicly accessible plaintext.

A user U that wants a file 𝐹 to be stored near a particular loca-

tion runs the setup protocol (PoGeoRet.Setup) on 𝐹 to generate an

4
Of course, in practice, a decentralized system will typically include many instances

of each party type.

3

https://github.com/GoATTeam/GoAT

Proof of Geo-Retrievability
• (sk,pk)←KGen(1𝜆) : Generate key pair. Run by the user.

• (𝐹 ∗,𝜂,pp) ←Setup(sk,pk,𝐹) : Runs setup of the underlying PoRet scheme to

generate 𝐹 ∗ , which contains the file plus the generated data, its handle 𝜂, and

some public parameters pp. Run by the user.

• c ← Chal(𝜂,pp) : On input file handle 𝜂 and params pp, derive a random

challenge c. Run by the verifier.

• 𝜋geo ← Prove(𝜂,𝑅,c) : On input file handle 𝜂, a geographic region 𝑅 and a

challenge c, generate a proof of geo-retrievability 𝜋geo
. Run by the prover.

– Commit(𝝁) : A sub-function of Prove that operates on a file fragment 𝝁 .
• 0/1←Verify(pp,𝑅,c,𝜋geo) : The verifier checks that the file is in the desired

region 𝑅 by verifying the proof 𝜋geo
using the challenge, public params.

• 𝐹←Extract(𝜂,𝑅,pp) : The extraction algorithm consists of two sub-functions:

– 𝜇all←Extr.Derive(𝜂,𝑅,pp) : An interactive protocol run with the prover. It

takes as input file handle, geographic region, public parameters and outputs

a list of file fragments 𝜇all .

– 𝐹←Extr.Assemble(𝜇all) : Assemble file fragments to compute the file.

Figure 2: Proof of Geo-Retrievability (PoGeoRet) API.

encoded file 𝐹 ∗. U then gives 𝐹 ∗ to a storage provider P situated

near the desired location. The public parameters pp are published,

e.g., on a blockchain.

A PoGeoRet protocol runs in epochs. During each epoch, the

provider P computes a Proof of Geo-Retrievability using the Prove
protocol. An auditor V can use the public parameters pp to verify

the generated proof via the Verify protocol.

The key ingredient in Prove enabling a file geolocation proof is

the sub-function Commit. It takes a file fragment 𝝁 as input and

outputs a commitment of it.

A PoGeoRet must also specify an extraction algorithm Extract
that can recompute the file 𝐹 from the prover’s responses. Extract
will be used to model extraction in the soundness definition of a

PoGeoRet in a way largely similar to prior works [31, 40]. A key

difference from prior works is that Extract needs to follows a spe-

cific design; it must be composed of two algorithms: Extr.Derive
interacts with the prover and outputs a list of file fragments 𝜇all

and Extr.Assemble recomputes the file 𝐹 from the fragments. We

assume, as in, e.g., [31, 40], that during extraction, the prover can

be rewound.

Modeling geolocation: We model geolocation in a PoGeoRet us-

ing a metric space [7] (M,dist) whereM is the full set of possible

storage locations and dist is a distance metric
5
onM. As an exam-

ple,M could be the set of all points on a sphere (e.g., the earth)

and dist the spherical distance function.
For a location 𝐿 ∈M, we define a region 𝑅 = (𝐿;𝛿) as the set of

all 𝐿′ ∈M that satisfy dist(𝐿,𝐿′) ≤𝛿 . For example, whenM models

points on a sphere, regions correspond to circles on the surface. For

simplicity, we will only consider such circular regions. We use the

notation 𝑅.𝐿 / 𝑅.𝛿 to refer to the center / radius of 𝑅 respectively.

Suppose that we want the PoGeoRet scheme to facilitate storage

of files in a target region 𝑅target = (𝐿;𝛿) where 𝛿 is a small radius

that captures the breadth of the target region. Our definition allows

for any arbitrary 𝛿 ; in practical settings however, geolocation will

be most beneficial for a small target region, e.g., the size of a city.

Any storage provider located inside 𝑅target can then join the system.

Region of uncertainty: We define a Region Of Uncertainty (ROU)

denoted 𝑅rou to capture the permitted noise in the attained geolo-

cation guarantee. The PoGeoRet scheme then must ensure that files

5
The metric is a function that defines the concept of a distance between any two set

members, and satisfying a few simple properties such as the triangle inequality.

Notation Description

U User / File owner

P Storage provider / Prover

V Auditor / Verifier

A,T Anchors (single / set)

Table 1: System entities. Anchors are specific to GoAT.

are stored inside the region 𝑅rou. In other words, an ROU helps

eliminate spurious proof failures.

Continuing the previous example of earth surface asM, say we

want to support file storage in NewYork City. Then the target region

is 𝑅target = (𝐿;𝛿) where, e.g., 𝐿 = (40.73◦,−73.93◦) and 𝛿 = 10km.
6

Suppose that we are willing to tolerate noise in proofs up to the

point where we ensure that files are at most 1000km from New

York. The desired region of uncertainty then is 𝑅rou= (𝐿;1000km).
Our definitions are given with respect to a single target region

𝑅target. In practice, it might be desirable to support several distant

locations. We expect our definition to be applied to each desired

target region independently.

Where convenient, we refer to a region of uncertainty 𝑅rou as

𝑅in and define its complement by 𝑅out=M\𝑅in.

Storage devices: To allow an adversary to place files in several

distinct locations, we introduce a model of (storage) devices. We

denote a device by D. In our security experiments (for soundness),

all devices are under the control of the adversary / prover. The

prover can place devices in locations of its choice but those loca-

tions remain fixed throughout the experiment. Devices have access

to unlimited storage memory. Formally, we model all devices by

way of an oracle Odev presented in Sec. 3.4.

Modeling time: As noted before, all PoGeoRet schemes must use

time to distinguish between a challenge answered with a local file

versus another answered with a file fetched from afar. To do so, each

critical operation involved—both computation and communication—

must have a specified expected time. We allow the adversary to

communicate messages (of any size) between devices with speed

𝑆max. In our security experiments below, we assume that the verifier

internally keeps track of time whenever necessary.

3.2 Adversarial Model
Table 1 lists the entities in a PoGeoRet scheme. The adversary

A controls the storage provider P. We assume that the auditor V
and the user U are honest. (In a decentralized system, it is easy to

imagine an honest-majority assumption for auditors.)

3.3 Completeness
Completeness requires that for all key pairs (sk, pk) output by
KGen, for all files 𝐹 ∈ {0, 1}∗, and for all {𝐹 ∗,𝜂,pp} output by
Setup(sk,pk,𝐹), the verification algorithm accepts when interacting

with a valid prover 𝑃 situated on a device D inside 𝑅target, i.e., for

all challenges c←Chal(𝜂,pp), we have

Pr

[
1←Verify(pp,𝑅in,c,𝜋geo)

���𝜋geo←Prove(𝜂,𝑅in,c)
]
≥ 1−negl(𝜆).

4

Device oracle Odev

1 :

State: A region 𝑅in
. Key-value pairs D[did]= (loc,mem) where the key did

is the device identifier, loc is its location,mem is a list denoting the memory.

A list 𝜇rec to track inputs to the commitment oracle Oin
com .

2 : init(𝑅) : Set 𝑅in =𝑅. Not callable by the adversary.

3 : createDevice(did,loc,mem) : If did ∈ D return ⊥. Set D[did]= (loc,mem) .

4 :

exec(did,func)→𝑜𝑢𝑡 : If did∉D return ⊥. Compute func and return its out-

put. func can read / write to D[did] .mem or call any of Odev functions inter-
nally. If Oin

com is called with input 𝝁 and D[did] .loc ∈𝑅in
, do 𝜇rec .append(𝝁) .

5 :
sendTo(did1,did2,data) : If data ∈ D[did1] .mem,

D[did2] .mem.append(data) .
6 : erase(did, 𝑗) : Erase index 𝑗 , D[did] .mem.erase(𝑗) .
7 : seenInROU(𝜇all) : Return 1 if ∀𝝁 ∈𝜇all,𝝁 ∈𝜇rec holds.

Figure 3: The device API.

3.4 Soundness
Our security definition for soundness involves two security ex-

periments: a setup experiment and a challenge experiment. The

setup experiment lets the adversary set up its devices and pick a file

𝐹 for the challenge-response interactions in the challenge exper-

iment. The challenge experiment corresponds to interactions with

a real-world verifier, and requires that an adversary responds to

𝜖-fraction of queries correctly. The challenge experiment interface

is reused for geo-extraction, where we try to extract 𝐹 using the

Extract protocol. Geo-extraction is deemed successful only if 𝐹 can

be computed from a set of file fragments 𝜇all s.t. every fragment

𝝁 ∈ 𝜇all was previously seen in a query to a commitment oracle

associated with target region 𝑅in. The definition says that the Po-

GeoRet scheme is sound if success in challenge experiment implies

that geo-extraction succeeds.

Corresponding to the setup and challenge experiments, the ad-

versary A consists of two parts, Asetup and Achal, each involved

only in its respective experiment.

The adversary Asetup may interact arbitrarily with the verifier;

it may create files and cause the verifier to run setup on them; it may

also undertake challenge-response interactions with the verifier

and observe if the verifier accepts or not.Asetup is allowed to place

any number of devices at locations of its choice and decide what to

store in their memories. Device locations are fixed after creation.

The purpose of the setup experiment is to run Setup on a file 𝐹

picked by the adversary. The resulting output 𝐹 ∗ is challenged in

the challenge experiment.

During the challenge experiment, challenges are issued to the

second adversary componentAchal and success is based onwhether

the proof verifies.

During geo-extraction, the same adversary component Achal
is reused. Geo-extraction has three steps in total. First Extr.Derive
derives file fragments 𝜇all from interactions with Achal. We allow

the adversary to be rewound in this step, as is standard in the PoRet

literature, e.g., [31, 40]. Second Extr.Assemble tries to recompute

the file from the derived file fragments 𝜇all. Extr.Assemble does not
interact with the adversary. The third and final step is verifying if

all the fragments 𝜇all were seen inside 𝑅in. Geo-extraction succeeds

only if step 2 and 3 both succeed. Finally a PoGeoRet scheme is

6
In practice, 𝛿 would have to be decided based on the city geography.

ExpsetupA (𝑅)
Odev .init(𝑅)

(sk,pk)←KGen(1𝜆)

𝐹←AOdevsetup (pk)
(𝐹 ∗,𝜂,pp)←Setup(sk,pk,𝐹)

𝑠←AOdevsetup (𝐹
∗,𝜂,pp)

return (𝜂,pp,𝐹 ,𝑠)

ExpchalA (𝜂,𝑅,pp,𝑠)
AOdevchal (𝑠) % Init Achal

𝑐←Chal(𝜂,pp) % Random chal

𝜋geo←AOdevchal .Prove(𝜂,𝑅,𝑐)
return OVerify (pp,𝑅,c,𝜋geo)

Figure 4: Setup and Challenge Experiments.

said to be sound if adversarial success in the challenge experiment

implies that geo-extraction succeeds w.h.p.

To infer whether a file fragment 𝝁 is inside the target region

𝑅in, we make use of a commitment oracle Oincom. Oincom models the

Commit function and records inputs (file fragments) whenever

the oracle is invoked from a device located in 𝑅in. So if Oincom was

queried about a fragment, then it must have been inside 𝑅in, and

consequently if enough file fragments are inside 𝑅in, then the file

𝐹 itself is in 𝑅in.

From the point of view of an adversary whose goal is to “cheat”

a verifier, A wants to create an environment in which V believes

the file is in 𝑅in, but it isn’t. Thus the aim of Asetup is to set up

devices in such a way that: (1) V accepts responses from Achal in

the challenge experiment and (2) V cannot recompute the file 𝐹

from the file fragments input to Oincom.
We present our detailed security experiments in Sec. 3.4.1. They

come together in our soundness definition in Sec. 3.4.2.

3.4.1 Soundness security experiments. We model device actions

in our security experiments via the device oracle Odev specified
in Fig. 3. Odev .init is used to store the target region of uncertainty

𝑅rou. Odev .createDevice is used to spawn a device at a given loca-

tion. Odev .exec allows the adversary to execute a function func
on a device of its choice, including any function in the PoGe-

oRet API. Within the API, PoGeoRet.Commit is explicitly mod-

eled using the commitment oracle Oincom, which tracks all calls

to Commit. Odev .erase allows erasing existing memory. Finally,

Odev .seenInROU is used to check if a given set of inputs were pre-

viously seen in a call to Oincom inside 𝑅rou.

Note that exec can also communicate with other devices through

Odev .sendTo (or) execute code on a different device. In all our exper-
iments, the adversary is given complete freedom to call any device

function. Both the experiments are in Fig. 4.

Setup experiment ExpsetupA : In our first experiment, Setup is run

over a file 𝐹 and the output given to the adversary, who decides

where to place the file.Asetup outputs state 𝑠 that is given toAchal.

Challenge experiment ExpchalA : In our second experiment,Achal
responds to a Commit challenge issued by the verifier. The adver-

sary is deemed successful if it generates a response that succeeds

with a probability at least 𝜖 . Note that we issue one PoGeoRet chal-

lenge which internally comprises of one PoRet challenge. Success

probability for the challenge experiment is defined as:

SuccchaA (𝜂,𝑅,pp,𝑠)=Pr
[
ExpchalA (𝜂,𝑅,pp,𝑠)=1

]
.

3.4.2 Soundness definition. Our main security definition is:

5

Definition 1 (Soundness). A PoGeoRet scheme is (𝜖,𝑝)-sound
w.r.t a target region 𝑅target achieving a region of uncertainty 𝑅rou, if
for all poly-time A:

Pr


𝜇all←Extr.DeriveA (𝜂,𝑅rou,pp),

Extr.Assemble(𝜇all)=𝐹,
Odev .seenInROU(𝜇all)=1

������ (𝜂,pp,𝐹 ,𝑠)←ExpsetupA (𝑅rou),
SuccchaA (𝜂,𝑅

rou,pp,𝑠)>𝜖

 ≥𝑝.
It states that a PoGeoRet scheme is (𝜖,𝑝)-sound if, for every ad-

versary that succeeds the challenge experiment with 𝜖 probability,

geo-extraction must also succeed with 𝑝 probability. Sometimes

we omit 𝑝 and say that a PoGeoRet scheme is 𝜖-sound; in such

cases we mean that 𝑝 is negligibly close to 1, i.e., 𝑝 = 1−negl(𝜆).
Note that the extraction algorithm Extr.Derive interacts withAchal
initialized with the state 𝑠 output by the setup experiment.

The above definitions of soundness and completeness assume

an interactive protocol between the prover and verifier. In practice,

non-interactive schemes are often desirable. We aim to build such a

scheme in GoAT. Due to lack of space, we provide non-interactive

definitions in App. B.1 (they only require minor modifications).

3.5 Practical model variants
There are two modeling assumptions which, by assuming an eco-
nomically rational adversary, can lead to significantly better per-

formance, and which we therefore embrace in GoAT. The first

assumption—a lower bound on bandwidth costs—dictates when

and how challenges may be issued to a provider, which in turn al-

lows use of internet infrastructure for effective bootstrapping. The

second assumption—rational behavior by an adversary in file-block

retention—allows for use of fast (linear-time) erasure codes.

These two models are of independent interest beyond GoAT; for
example, they could be applied to a PoRet scheme.

3.5.1 Challenge regimes. In the previously described model, the

verifier challenges the prover at random times. We refer to this chal-

lenge pattern as the random-challenge model. Building a practical
PoGeoRet scheme under this model requires an existing network

of verifiers, thereby posing a bootstrapping problem.

A more practical model, we believe, is one, based on existing

internet infrastructure. In GoAT, we derive challenges from sig-

natures provided by internet servers. But since the verifier is not

issuing challenges, the prover decides when the challenge-response

interaction is going to take place. We call this model the flexible-
challenge model, signifying the extra flexibility prover has.

At first sight, such a model might not seem to work, as the

prover can download the entire file before initiating the challenge-

response interaction. But we argue that by imposing a restriction

that challenge-response interactions take place once per interval,

and by using a small interval length (i.e., high challenge frequency),

the flexible-challenge model meets our security goals—assuming

an economically rational adversary.

We now discuss the operational and security models for flexible-

challenge model and end with an example.

Operational model: Time runs in epochs. Each epoch is in turn com-

posed of 𝐼 intervals, each of length 𝛽 . Interval length determines

challenge frequency, i.e., challenges are issued once per interval.

Epoch length determines verification frequency, i.e., challenge re-

sponses are accumulated over the 𝐼 intervals are generated and

verified only at the end of an epoch.

Security model: Like before, we begin with a setup experiment

where the adversary picks a file 𝐹 and initializes several devices.

But then, 𝐼 challenge experiments take place, one per interval. After

the epoch (or) 𝐼 intervals end, the challenge responses are verified.

Geo-extraction takes place after that.

The device oracle Odev now maintains a record of the commit-

ment oracle queries made in each interval; let 𝜇rec
𝑖

denote the list

of fragments queried in the 𝑖th interval. In each interval, the ad-

versary requests a challenge at a time of its choosing. After the

epoch (or 𝐼 intervals) ends, we extract the file 𝐼 times by running

Extract. Geo-extraction in the 𝑖th interval succeeds if the file can

be assembled from the fragments in 𝜇rec
𝑖

. Soundness is defined in

the same way as before except that we now require geo-extraction

succeed in all 𝐼 intervals.

The model includes a bandwidth constraint: only 𝜙 bytes can

be transferred from devices in 𝑅out to those in 𝑅in (𝜙 ≪ |𝐹 |) per
interval. The bound 𝜙 is meant to reflect the economics of storage:

A rational adversary will not incur bandwidth costs in excess of the

revenue it receives for storage. Bandwidth costs today are several

orders of magnitude more than that of storage, as shown below.

Example: For the purpose of this example, we compare the band-

width and storage costs charged by Amazon (the storage cost is

used as a proxy for revenue). Let’s say we set the interval length

𝛽 = 30mins. If the encoded file size is |𝐹 ∗ |=1TB, then the storage

revenue is at most $0.02 per interval on Amazon S3 [11]. On the

other hand, AWS bandwidth costs start from $20 per TB.
7
So down-

loading 1GBwould cost the same as the revenue obtained by storing

1TB, and therefore 𝜙 =1GB; more broadly the relation between the

bandwidth cap and the encoded file size is given by 𝜙 =
|𝐹 ∗ |
1000

.

3.5.2 Rational file retention and erasure-coding. Recall that a
PoRet encoding 𝐹 ∗ of file 𝐹 incorporates an erasure code (to amplify

soundness). To get strong soundness based on the security defini-

tions we have given, it is essential to use a code with high distance

between codewords—e.g., a maximum distance separable (MDS)

code such as Reed-Solomon—treating 𝐹 as a codeword. Such erasure

coding is robust to adversarial erasures. MDS coding, however, is

expensive in practice for large codewords, asymptotically at best

𝑂 (𝑛log𝑛) for file size 𝑛 (given tolerance of a constant-fraction of

erasures) [35, 41], and very costly in practice. (To avoid this problem,

a number of PoRet protocols, e.g., [20, 31], have “striped” files, i.e.,

broken them up into multiple codewords, permuting and encrypt-

ing error-coding symbols across codewords to tolerate adversarial

erasures / corruption.)

A second, more practical approach, we believe, is to use weaker

erasure codes, specifically fast (e.g., linear-encoding-time) codes,

e.g., [42]. Such codes are far more performant for large files than

MDS coding. They are designed, however, for noisy channels with

random erasures, and are brittle in the face of adversarial erasures.

Thus they provide poor security against a malicious adversary.

Given a rational adversary, however, it is possible to achieve

good security with linear-time coding. Such an adversary may be

viewed as seeking to maximize its financial gain and minimize its

expenditure on storage. All other things being equal, however—for

instance, given a certain amount of allocated storage in a given

7
AWS bandwidth costs vary by region, ranging from $20-$100 per TB transferred [10].

S3 charges also vary by region, we use the maximum above.

6

geolocation—such an adversary will attempt to preserve 𝐹 . We

model this formally through a greedy storage algorithm that decides

where to place bits of a given file in a greedy way with preference

given to devices in 𝑅in. The adversary still retains control of storage
capacities of the devices, thus effectively deciding the amount of

storage space inside 𝑅in. More details are in App. B.2.

Assuming rationality in a provider reflects natural ecosystem

design decisions. For example, a provider may be paid for retrieving

𝐹 , or may earn a reputation for reliable service. Such a provider

has a financial incentive to ensure that a stored file 𝐹 is recoverable.

The provider will not strategically erase file blocks in an attempt to

render 𝐹 unrecoverable if it has to store the same amount of data

anyways. Consequently, it is possible to achieve strong soundness

using a linear-time erasure code.

4 THE GOAT PROTOCOL
We now present details of our PoGeoRet scheme, GoAT. We be-

gin by discussing GoAT-specific modeling details (Sec. 4.1). Next

we provide a brief description of the Shacham-Waters (SW) PoRet

scheme (Sec. 4.2). In Sec. 4.3, we present the two variants of GoAT:
GoAT-H and GoAT-P, that use slightly different variants of the SW

PoRet scheme. In Sec. 4.4, we discuss the security guarantees GoAT
provides and introduce a new knowledge assumption. Finally in

Sec. 4.5, we discuss extensions supporting use of low-resolution

anchors and ways to decentralize trust among anchors.

4.1 System Model
We describe modeling details specific to GoAT now. GoAT achieves

soundness under the flexible-challenge model. All the important

notation is tabulated in Table 2.

Network model: We approximate the Earth to be a sphere. The

metric space (M,dist) is defined by the set of all locations on earth

(M) and the spherical distance function (dist).
We assume that the maximum network speed attainable by an

adversary is 𝑆max. And the minimum speed required for storage

providers joining our system is 𝑆min. The ratio 𝜔 =𝑆max/𝑆min is the

network speedup of the adversary. These parameter values need to

be decided based on empirical measurements (See Sec. 5). Honest

providers only need to attain the speed 𝑆min for a short period of

time. For example, if interval length 𝛽 =1hr, good connectivity for

a few seconds every hour suffices.

We also include a small startup cost 𝑡start as it dominates the

round trip times for nearby locations. The expected maximum

time for a round trip between two locations 𝐿1 and 𝐿2 is given by

rttmax (𝐿1,𝐿2)= (2dist(𝐿1,𝐿2)/𝑆min)+𝑡start.
Anchors: GoAT leverages existing internet servers called anchors.

Anchors must provide an authenticated time API and have a static

known location. The time need not be absolutely correct, relatively

consistent time is allowed. Clock drift is assumed to be negligible.

To begin with, anchors are assumed to be honest. Decentralizing

trust in anchors is discussed in Sec. 4.5.

Anchors serve time through an API denoted “GetAuthTime”. It
must take as input a nonce 𝑁 and return a transcript 𝑇 = {𝑀,𝜎 }
where 𝑀 = {𝑡,𝑁 } is a message containing the time 𝑡 and nonce

(𝑀 could also contain other data), and 𝜎 is a signature over𝑀 , i.e.,

𝜎 = SigskA (𝑀). The key pair (skA,pkA) are the secret, public key

Notation Description

𝜖 Frac. of queries answered correctly

𝜌 Erasure code rate

𝐼 ,𝛽 #intervals per epoch, interval length

𝑅= (𝐿;𝛿) Circular region defined by center 𝐿 & radius 𝛿

𝜔 Network speedup

𝑇 Anchor transcript

𝝁 File fragment

𝑛, 𝑠, 𝑘 #blocks, #sectors-per-block, #challenges in SW

𝜙 Bandwidth cap

𝛼 Grinding cap (2
𝛼 GetAuthTime calls)

𝑎 Amplification factor

Table 2: Notation

of the anchor respectively. We assume a list of anchors T is de-

cided based on various factors including which locations to support,

anchor trustworthiness and reliability.

The timestamp resolution of an anchor ΓA is defined as the small-

est (non-zero) difference between any two timestamps. GoAT sup-

ports anchors of all resolutions, although smaller resolution leads

to better performance.

Storage model:We assume storage providers use SSDs for storage

(we do not support HDDs, see [36]). Modern SSDs are quite fast with

seek times of just a few milliseconds [8] due to inbuilt parallelism.

4.2 Shacham-Waters scheme
At a high level, SW uses BLS-style signatures to facilitate proof

aggregation and public verifiability. We explain important details

of the SW protocol [40] now omitting low-level details, which can

be found in Fig. 9 in the Appendix.

Let 𝑒 :G×G→G𝑇 be a computable bilinear map, with Z𝑝 the sup-

port for G. The setup in SW (SW.Setup) involves dividing the file
into 𝑛 blocks, with each block further divided into 𝑠 sectors. Each

sector is a symbol in Z𝑝 . For every block, an aggregate signature

is computed over all the sectors. {𝜎𝑖 }𝑛𝑖=1 denote the signatures.
Each challenge in SW.Chal consists of a block number 𝑐𝑖 ∈ [𝑛]

and a coefficient 𝑣𝑖 ∈Z𝑝 , both derived randomly. Denote the num-

ber of challenges by 𝑘 . Generating a proof in SW.Prove requires
computing a linear combination of the 𝑘 file blocks to compute

𝝁 =
{
𝜇 𝑗

}𝑠
𝑗=1

(Bold face denotes vectors) and aggregating the cor-

responding signatures to compute 𝜎 . Crucially, the proof size does

not depend on the number of challenges 𝑘 .

Modifications to SW: We add a function SW.Commit that com-

putes and commits the value 𝝁 using a vector commitment (VC)

scheme. Note that 𝝁 is computed exactly as in the proof function.

We consider several variants of SW that differ in the choice of

VC. The main one SW-P uses the Correlated Pedersen scheme where
two normal Pedersen commitments are computed with correlated

bases. That is, given bases (h1,h2 =h𝑎
1
) and a vector 𝝁, compute

(h𝝁
1
,h𝝁

2
) where the exponentiation operation between the two

vectors denotes the Pedersen commitment computation. Another

variant SW-H uses a hash function like SHA2 to commit. Referring

back to the formalism from Sec. 3, the crucial Commit function in

GoAT is vector commitment and 𝝁 acts as the file fragment.

The verification function (SW.Verify) takes a commitment of 𝝁
as an extra input and verifies that the value 𝝁 provided in a proof

matches the commitment. Other functions are unchanged.

7

4.3 GoAT protocols
We now present the GoAT protocol which relies on high-resolution

anchors, i.e., an anchor A with millisecond or lower timestamp

resolution (or) ΓA ≤1ms. A real-world example of such an anchor

can make use of Roughtime [9], which has a 1µs resolution. Low-

resolution anchors are considered in Sec. 4.5.1.

Two variants ofGoAT arise depending on the PoRet scheme used.

The first, GoAT-H, uses SW-H PoRet scheme, and admits a security

proof in the random oracle model. The second, GoAT-P, uses SW-P

PoRet scheme and is more performant than GoAT-H with at least

3x smaller proof sizes, but its security is based on a new assumption.

The two schemes are largely similar, so we present GoAT-P first

and discuss modifications needed for GoAT-H subsequently.

4.3.1 GoAT-P. As usual, our setting involves a user U that wants

to store a file 𝐹 with a provider situated in a location 𝐿P ∈𝑅target,
a target region. Since GoAT is a non-interactive protocol, all APIs

have the preamble NI. As noted before, the non-interactive PoGe-

oRet API is in the Appendix (Fig. 7).

Setup (NISetup): U runs the PoRet setup protocol (SW.Setup) over
𝐹 to generate transformed file 𝐹 ∗, file handle 𝜂, and the public

parameters pp. Then U picks a storage provider P located at an

admissible location 𝐿P and sends {𝐹 ∗,𝜂,pp} to P.
As noted before, we assume that a set of anchors T is predeter-

mined; let A∈T be one such anchor located at 𝐿A. For simplicity, in

this section, we assume anchors are trusted and thus that it suffices

to use the single anchor A. Other protocol parameters such as the

interval length 𝛽 , number of intervals per epoch 𝐼 are assumed to

be predetermined.

Proof generation (NIProve):Generating a proof of geo-retrievability
happens in two phases. In the first, geo-commitment generation

phase, the provider interacts with the anchor to obtain PoRet chal-

lenges and uses them to generate a PoRet commitment. This phase

is run once per interval. In the second PoRet computation phase,

run only once per epoch, the provider computes the full PoRets.

Geo-commitment generation (NIGeoCommit): The key idea is to

sandwich the file access operation between successive pings to the

anchor. The signature returned in the first ping is used as a PoRet

challenge. A PoRet commitment is computed which is set as the

nonce in the second ping. Fig. 5 depicts the geo-commit protocol

explained now:

(1) Ping #1: Sample a random nonce 𝑁1 and send a request

GetAuthTime(N1) to A. Receive transcript𝑇1= {𝑀1,𝜎1 } where
𝑀1= {𝑡1,𝑁1 } and 𝜎1=SigskA (𝑀1).

(2) PoRet commitment: Use 𝜎1 as randomness to derive a set of chal-

lenges S← SW.Chal(𝜂,pp,𝜎1). Now generate a commitment

com← SW-P.Commit(𝜂,S). (Refer to Sec. 4.2 (or Fig. 9) for a

description of SW.Chal and SW-P.Commit.)
(3) Ping #2: Set nonce 𝑁2 = com and ping the anchor A again via

GetAuthTime(N2). Receive 𝑇2= {𝑀2,𝜎2 } where𝑀2= {𝑡2,𝑁2 }.

We refer to the pair 𝐶geo= {𝑇1,𝑇2 } as a geo-commitment. Note

that the PoRet commitment com is embedded in 𝑇2, so we do not

explicitly mention it. By the end of an epoch (or 𝐼 intervals), the

provider has 𝐼 geo-commitments

{
𝐶
geo
𝑚

}𝐼
𝑚=1

.

Anchor AProvider P

Time 𝑡1

Time 𝑡2

Using 𝜎1 as seed,

compute PoRet

commitment

𝑁2 = com

GetAuthTime(N1)

{𝑀1
,𝜎1 }

GetAuthTime(N2)

{𝑀2
,𝜎2 }

Time differ-

ence 𝑡2− 𝑡1

Figure 5: The geo-commitment protocol.

PoRet computation (NIPoRCompute):Once an epoch ends, the provider
finishes proof generation by computing PoRets corresponding to

the commitments computed during the epoch.

A naïve approach is to simply run the SW.Prove function 𝐼 times

with the same challenge sets used in step 2 of the geo-commit phase.

But this leads to larger proofs. (Looking ahead, GoAT-H takes this

naïve approach.)

Instead we aggregate proofs in much the same way as SW.Prove,
except for one key step, coefficient randomization. We derive a set

of pseudorandom coefficients

{
𝑟 𝑗
}
from the final PoRet commit-

ment com𝐼 . Denote the challenge set used to compute the 𝑗𝑡ℎ PoRet

commitment by S𝑗 =
{
𝑐𝑖 𝑗 ,𝑣𝑖 𝑗

}𝑘
𝑖=1

where 𝑗 ∈ {1,...,𝐼 }. The newly

generated coefficients are incorporated into those for the challenge

sets, ∀𝑗,S∗
𝑗
=

{
𝑐𝑖 𝑗 ,𝑟 𝑗𝑣𝑖 𝑗

}𝑘
𝑖=1

. The modified challenge sets are aggre-

gated as S∗=∪𝐼
𝑗=1
S∗
𝑗
.

Intuitively, the set of coefficients

{
𝑟 𝑗
}
ensures that a malicious

provider cannot skip accessing the file even for a single interval.

We give further details later.

Given S∗, the PoRet is computed as 𝜋PoRet←SW.Prove(𝜂,S∗).
The full proof of geo-retrievability then consists of the 𝐼 geo-

commitments and the PoRet, 𝜋geo=
{ {

𝐶
geo
𝑚

}𝐼
𝑚=1

,𝜋PoRet
}
. 𝜋geo is

given to the auditor V for verification.

Proof verification (NIVerify): The auditor checks anchor tran-

scripts in the 𝐼 geo-commitments using the anchor’s public key.

Then the auditor derives PoRet challenges from transcript signa-

tures as in proof generation. The coefficients

{
𝑟 𝑗
}
and aggregate

challenge set S∗ are similarly computed. V computes an aggregate

commitment𝐶∗=
∏𝐼

𝑗=1 (com𝑗)𝑟 𝑗 . The proof of retrievability 𝜋PoRet

and 𝐶∗ are verified by SW.Verify(pp,S∗,𝐶∗,𝜋PoRet).
Note that verification succeeds even with randomization of the

challenge coefficients because SW-P.Commit contains only linear

operations and the vector commitment scheme is homomorphic.

The final verification step is to check that the two timestamps are

close in all geo-commitments, namely that 𝑡2−𝑡1 ≤Δ(𝐿A,𝐿P), where
Δ is a pre-agreed upon function that takes anchor, provider loca-

tions as inputs and outputs themaximum runtime ofNIGeoCommit
operations (those happening between times 𝑡1, 𝑡2). We now discuss

how Δ is set. Figure 12 in the Appendix specifies the GoAT protocol.

Setting Δ: Deciding Δ requires effectively striking a balance be-

tween completeness and soundness. To achieve completeness, Δ
should output high enough values for honest parties to succeed.

8

At the same time, Δ should output low enough values to prevent

cheating, i.e., improper location of a file, by a cheating provider.

As shown in Fig. 5, the time difference 𝑡2−𝑡1 captures the time

taken to run two operations: a GetAuthTime API call and a PoRet

commitment. Denote the maximum time for the two operations by

𝑡ping and 𝑡com respectively; we then have Δ(𝐿A,𝐿P)=𝑡ping+𝑡com.
Elapsed time for the GetAuthTime API call depends on the phys-

ical distance between the anchor and provider. We have 𝑡ping =

rttmax (𝐿A,𝐿P) + 𝑡proc where the first term denotes the maximum

round trip time introduced in Sec. 4.1 and 𝑡proc denotes the maxi-

mum processing time by the provider and anchor (processing time

accounts for the time taken to compute a response, see Sec. 5.2 for

details). Therefore we have:

Δ(𝐿A,𝐿P)= (2·dist(𝐿A,𝐿P)/𝑆min)+𝑡start+𝑡proc+𝑡com . (1)

We later prove that for a provider to succeed in a PoGeoRet proof

for 𝐹 , most of 𝐹 must be stored within Δ(𝐿A,𝐿P) ·𝑆max/2 distance
of the anchor location 𝐿A.

Crucially, the radius of the ROU grows linearly with Δ(𝐿A,𝐿P).
This serves as a motivation to minimize computation time in a

PoGeoRet as much as possible. Indeed, it is to reduce 𝑡com that we

introduce a commitment function as a means to commit to a PoRet

proof before generating the proof itself.

Grinding attacks: SinceNIGeoCommit protocol is prover-initiated,
an adversarial prover can exploit by re-running the protocol. For

example, an adversary could save on storage by only storing a

portion of the file, and repeatedly query the anchor until all the

challenges lie in the stored part.

Let 𝑔 be the stored fraction. To model practical constraints, we

assume that a prover can make upto 2
𝛼 GetAuthTime API calls per

interval (this number needs to be set based on the actual API call

costs). The success probability after 2
𝛼
API calls is 𝑝 =1−(1−𝑔𝑘)2𝛼 .

The adversary needs to choose the file-fraction 𝑔 such that 𝑝 is

non-negligible, i.e., 𝑔 ≥ (1− (1− 2−𝜆)2−𝛼)1/𝑘 (or) 𝑔 > 2

−𝜆−𝛼
𝑘 (via

binomial expansion). Intuitively as the number of challenges 𝑘 is

raised, the adversary is forced to store more. We derive an exact

constraint involving 𝑘 and 𝛼 in our security proofs.

Coefficient randomization:Randomization at the end of an epoch

is necessary to ensure that the PoRet commitments {com𝑖 } are cor-
rectly computed in all intervals. If the ratio between any two ran-

dom coefficients was predictable, e.g., say 𝜏 =𝑟𝑖/𝑟 𝑗 was known for

some 𝑖 < 𝑗 , then an adversary could cheat by postponing file access

required to be done in the 𝑖th interval to the 𝑗 th interval. Simply set

com𝑖 to random and com𝑗 in a way that the verification equation

checks out, i.e., com𝑗 = (𝐻𝑖 (com𝑖)−1)𝜏𝐻 𝑗 . 𝐻𝑖 and 𝐻 𝑗 are the actual

𝑖th and 𝑗th PoRet commitments that the adversary computes in

the 𝑗th interval. More formally, we later show that an adversary

that skips PoRet commitments cannot succeed in verification, as it

is equivalent to breaking commitment binding, which can happen

with negligible probability.

We ensure a negligible likelihood of guessing the random coeffi-

cients {𝑟 𝑗 } a priori by deriving them from the final PoRet commit-

ment com𝐼 . This still leaves possible grinding attacks. The best strat-

egy for an adversary is to randomly choose the commitments (or

random coefficients) and check if the verification equation succeeds.

The probability of success is 2
−𝜆

(as 2
𝜆
is the size of the group used).

With grinding, the probability increases to 2
−𝜆+𝛼

, which is still neg-

ligible for practical parameters. One way to avoid grinding is to ob-

tain random coefficients from public randomness beacons, e.g., [4].

4.3.2 GoAT-H. The key difference in GoAT-H is the use of a hash

function as the vector commitment. This results in larger proofs

and extra computational steps in Prove and Verify.
Geo-commitment generation (NIGeoCommit) is same as before

except the change in the PoRet commitment function. PoRet compu-

tation (Prove) involves naïvely running SW.Prove 𝐼 times because

the aggregation tricks do not work anymore. If S𝑗 denotes the
𝑗th set of challenges, compute 𝜋PoRet

𝑗
←SW.Prove(𝜂,S𝑗); the final

proof is 𝜋PoRet←{𝜋PoRet
1

,𝜋PoRet
2

,...,𝜋PoRet
𝐼

}. Accordingly, verifica-
tion involves running SW.Verify 𝐼 times.

The proof size and computation times in GoAT-H are same as

GoAT-P asymptotically, but with higher constants (about 3x bigger

proofs). Geolocation quality remains the same.

4.4 GoAT security
We discuss the security of GoAT-H and GoAT-P now. GoAT-H op-

erates in the random oracle model and it’s security proof relies

on the commonly used “knowledge of queries” technique. On the

other hand, GoAT-P’s security relies on a new assumption that we

introduce now, called the KEV Assumption (KEVA).

KEVA extends the commonly used KEA1 [14] for a vector of ele-

ments. It states that ifA takes two correlated sets of bases (h1,h2=
h𝑎
1
) as input and outputs (𝑐1,𝑐2) s.t. 𝑐2 = 𝑐𝑎

1
, then there exists an

extractor EA that can output a pre-image x s.t. the Pedersen com-

mitment of x with h1 is 𝑐1, i.e., hx1 =𝑐1 while using the same inputs

as before. This is saying that the only way of computing (𝑐1,𝑐2) is
by picking a pre-image x and computing its Pedersen commitment.

Definition 2 (KEVA𝑠). Given any set of distinct bases h1 ∈G𝑠 ,
for any PPT A, there exists a PPT extractor EA s.t.

Pr

[
x←EA (h1,h2),

hx
1
=𝑐1

���� 𝑎← $Z𝑝 ,h2=h𝑎1
(𝑐1,𝑐2)←A(h1,h2),𝑐2=𝑐𝑎

1

]
>1−negl(𝜆) .

Say the target region is a single location, 𝑅target= (𝐿;0). Then the

region of uncertainty achieved by GoAT-H and GoAT-P is a circle

centered at anchor’s location with radius 𝛿𝐿 =Δ(𝐿A,𝐿) ·𝑆max/2. In
practice, the target region might have a small diameter, 𝑅target =

(𝐿;𝛿 ′). As long as 𝛿 ′ is small, we can approximate and define the re-

gion of uncertainty as 𝑅rou= (A;𝛿 ′′) where 𝛿 ′′=max{𝐿′∈𝑅target }𝛿𝐿′ .

Theorem 1. Let𝑤 =
(
𝜌+ 𝜙

|𝐹 ∗ | +1−2
−𝜆−𝛼
𝑘

)𝑘 . For any 𝜖 ≤ 1 s.t. 𝜖−𝑤
is positive and non-negligible and that the CDH problem is hard in
bilinear groups, GoAT-H is (𝜖,𝑝)-sound at a target geographic region
𝑅target = (𝐿;𝛿 ′) achieving a geolocation guarantee of 𝑅rou = (A;𝛿 ′′)
under the flexible challenge model and the random oracle model.

GoAT-P achieves the same security as GoAT-H except that it

requires the KEV assumption. The proof sketches are in App. D.

4.5 GoAT extensions
We discuss two extensions to GoAT: making GoAT work with TLS

1.2 anchors and decentralizing trust among anchors.

9

4.5.1 Low-resolution anchors (TLS 1.2). The NIGeoCommit
protocol described before assumes anchors provide high-resolution

time. But most existing anchors today such as TLS 1.2 servers only

offer second-level resolution.

We deal with such anchors by amplification. The idea is to chain a
sequence of proofs. Specifically, the prover alternates between com-

puting a PoRet commitment and pinging the anchor, effectively fill-

ing an entire resolution tick this way. For example, TLS servers offer

second-level resolution, so an entire second is filled with alternating

PoRet commitments and anchor pings. The required length of the

chain of proofs is set by the amplification factor 𝑎. 𝑎 grows inversely
with the expected time difference Δ(𝐿A,𝐿P); higher Δ means lower

𝑎 and vice versa. More details can be found in App. A. In summary,

amplification only causes a minor degradation in geolocation qual-

ity. But the proof size grows linearly with the amplification factor 𝑎.

One other change needs to be made to support TLS. In GoAT-P,
the vector commitment has two elements and won’t fit into the

nonce field of the TLS handshake for commonly used groups. So

we include a hash of the commitment and reveal the underlying

commitment as part of the proof. Details can be found in App. A.

4.5.2 Decentralizing trust among anchors. It is straightforward
to consider an extension to GoAT where as long as a threshold 𝑡

number of anchors collude, the system is secure. This would come

at the cost of somewhat more work to provers as they would have

to execute NIGeoCommit with 𝑡+1 anchors every interval. But the

proof size remains the same and the increase in prover / verifier

computation time is not huge (See Sec. 5.2).

The geolocation quality degrades due to the use of multiple an-

chors. Previously each anchor produced a circular ROU centered

at its location, but with 𝑡+1 anchors, the new ROU is the union of

the 𝑡+1 spherical circles as some 𝑡 of them might be corrupt.

5 IMPLEMENTATION AND EVALUATION
We implemented the more efficient variant of GoAT, GoAT-P, in
approximately 2500 lines of C with support for both TLS 1.2 and

Roughtime anchors. Our implementation uses TLSe [44] for TLS,

Roughenough [43] for Roughtime and Relic [12] for pairings. We

optimize the implementation of NIGeoCommit using the asynchro-
nous I/O library libaio [6] and POSIX threads.

Section structure: In Sec. 5.1, we discuss a number of setup con-

siderations, and in Sec. 5.2, we present our evaluation results.

5.1 Setup considerations
For the purposes of this paper, we only aim to demonstrate the

feasibility of our approach. We thus set parameters conservatively,

favoring strong completeness with somewhat looser geolocation

bounds than may be achievable in practice. For more aggressive

parametrization, a detailed internet measurement study is needed.

5.1.1 Network parameters. We set the maximum network speed

of an adversary 𝑆max=
2

3
𝑐 where 𝑐 is the speed of light. This is the

max. speed achievable in a fiber-optic cable [32].

Estimating the minimum speed for an honest user 𝑆min can be

tricky due to inconsistent network quality across locations. Based

on RTT data from Wonder Network [39], we set 𝑆min = 2

9
𝑐 , i.e.,

speedup𝜔 =𝑆max/𝑆min=3 and the constant startup cost 𝑡start=5ms.

These parameter choices are consistent with recent work [19] that

estimates the median RTT between PlanetLab nodes
8
and popular

websites to be about 3.2× slower than speed of light; so 𝑆min=
𝑐
4.5

is conservative. These parameters worked consistently across our

experiments, and we emphasize again that our flexible-challenge

model permits a prover to make multiple proof attempts over a

given interval, creating strong resilience to network fluctuations.

5.1.2 Existing anchor discovery. To show that there is an existing

network of servers that can serve as GoAT anchors, we perform a

limited measurement study of existing TLS and Roughtime servers.

In this study, we identify servers that return the correct time

and have unique locations. We obtain server locations from an IP

geolocation database, IP2Location.
9
We verify location uniqueness

heuristically by finding each server’s ISP and making sure it does

not belong to a Content Distribution Network (CDN) [2]; servers

that use CDNs do not have a fixed location since they respond from

a replica closest to the query point. A stricter approach would be

to perform a delay-based geolocation experiment validating that

the server location is unique, e.g., [32, 46]. We do one such exper-

iment for Roughtime on a small scale. For TLS 1.2 and Roughtime

respectively, our findings are as follows.

TLS 1.2:We focus on domains belonging to educational institutions,

as we find they are more likely than other domains to have unique

physical locations. We take the first 2850 domains from the Alexa

top 1M list [1] containing the substring “.edu”. We retain only those

servers that return the correct time and whose ISP does not belong

to a CDN provider. The result is a set of 300 domains that can be

used as anchors, i.e., 10.5% of our original list. But this list is heavily

biased towards anchors located in the U.S. (60% of the 300). So to find

anchors for a different location, we apply more specific filters—e.g.,

to find anchors in UK we search for domains ending with “.ac.uk”.

We also limit ourselves to using only those TLS 1.2 servers that

use RSA for authentication. This is done purely for implementation

convenience. We find that the proof transcript length for RSA-based

servers is 389 bytes, which includes a 256-byte signature.

TLS uses TCP in the transport layer. Therefore in a standard TLS

connection, it takes two round trips to get time: the first round trip

establishes a TCP connection while the second gets the time. An

important trick for better geolocation accuracy is to open all TCP

connections prior to the start of the NIGeoCommit protocol. In our

implementation, we open 𝑛 sockets to the anchor in parallel if 𝑛

pings are needed in NIGeoCommit.

Roughtime: We are aware of the existence of four Roughtime

servers as of Apr. 2021. All of them return correct time with mi-

crosecond granularity. To check that their locations are unique,

we perform a small geolocation experiment by sending an ICMP

ping request from two vantage points: North Virginia (NV) and

Singapore (SP). In this process, we identify one of the servers as

unusable for geolocation, as it has a RTT of 17ms from NV and

30ms from SP, suggesting it is sitting behind a CDN provider. We

find that the proof transcript length for Roughtime is 360 bytes.

8
PlanetLab nodes tend to be well-connected to the internet, matching our expectation

of storage provider’s connection. [19] also picks geographically diverse nodes.

9
These databases are known to have some errors [26] and a rigorous geolocation

experiment like [46] would have to be done before deploying our system.

10

Anchor processing times:ManyTLS servers take a non-negligible

amount of time to compute the response, called the anchor pro-

cessing time (𝑡aproc). This is measured by pinging 114 servers at

repeated intervals over two weeks both via TLS (with TCP connec-

tions established apriori) and ICMP (for raw RTT). The processing

time is defined as the difference between the two. We compute

the average processing time for each server, and then the 75th

percentile over all the servers, which is 𝑡 tlsaproc=6.5ms. Anchors in

the remaining 25th percentile are discarded. Note that setting a

somewhat high value of 6.5ms for all TLS servers is conservative—a
better approach is to set anchor-specific values.

For Roughtime, we find that the processing times are almost

negligible, we set 𝑡 rtaproc=2ms. This could be due to a combination

of several factors, e.g., less load, faster transport layer (UDP) [19]

and faster signature scheme (EdDSA).

5.1.3 GoAT parameters. We talk about how various parameters

in GoAT are set now. App. C discusses some associated tradeoffs.

For SW PoRet, we use the BLS12-381 curve. Except in one exper-

iment below, we set the number of sectors per block, 𝑠 =96.

As we discuss in Sec. 4.4, (𝜌 + 𝜙

|𝐹 ∗ | + (1−2
−(𝜆+𝛼)/𝑘))𝑘 needs to

be negligible. Assuming the grinding constraint 𝛼 =40, one set of

parameters to achieve 128-bit security are code rate 𝜌 = 0.33 and

number of challenges 𝑘 =250;10 note that the bandwidth cap is set

to 𝜙 =0.001|𝐹 ∗ | using the economic analysis from Sec. 3.5.1.

For the experiments below, we set the number of challenges 𝑘 =

100.We expect minimal impact on results due to the slightly lower 𝑘 .

Remaining parameters: In eq. (1), two more parameters remain to be

set, 𝑡proc and 𝑡com. Note that we separate the processing time 𝑡proc
into client (𝑡cproc) and anchor (𝑡aproc) components, with the latter

discussed before. 𝑡cproc corresponds to the time spent in handling

the anchor response. We set 𝑡cproc=1.5ms and 𝑡com=2ms based on

code benchmarks (the latter is discussed below).

5.2 Evaluation
We evaluate GoAT through several benchmarks and perform a real-

world experiment over a week (Sec. 5.2.1). For most benchmarks,

we use an AWS c5.4xlarge machine with 16 CPU, 32GB RAM and

2TB io2 SSD that is capped at 20k IOPS. The io2 SSD is only used for

experiments with small duration as it is more expensive, whereas

for the long experiment in Sec. 5.2.1, we use a 100 IOPS, 30GB gpt2

SSD. We do not expect this decision to have a significant impact as

we show below that the effect of file sizes is negligible. 50 samples

were taken in all experiments to compute the mean and standard

deviation (shown in brackets).

PoRet commit time (vs) file size: As explained in Sec. 4, PoRet

commit time has a direct impact on the ROU radius. Table 3 presents

the time taken to compute the PoRet commitment as a function of

file size (128MB to 256GB). The times are all small (1-4ms) thanks

to our parallelized implementation (we set 𝑡com=2ms which works

for files below 16GB). Of the numbers shown, about 1ms is spent

on the actual commitment computation, while the rest is for file

reads. We use x64 Assembly accelerated code provided by Relic

for EC operations and further optimize it using a multi-threaded

implementation (by breaking up a vector into smaller ones). The file

10
Another set of parameters with higher code rate is 𝜌 =0.5, 𝑘 =360.

File size Time (ms)

128MB 1.09 (0.02)

1GB 1.02 (0.02)

4GB 1.02 (0.02)

16GB 1.04 (0.02)

64GB 4.27 (0.22)

256GB 4.06 (0.22)

Table 3: Time taken for PoRet commit with standard deviations.

#intervals PoRetCompute (ms) Verify (ms)

1 18.11 (0.06) 47.28 (0.02)

10 183.65 (0.43) 320.81 (5.59)

100 1,838.44 (0.73) 2,991.14 (61.03)

Table 4: Computation time of PoRetCompute and Verify (vs) no. of
intervals per epoch. Standard deviations in brackets.

Protocol Anchor type Proof size

GoAT-H Any 𝐼𝑎𝑒 (𝑠+1)+𝐼 (𝑎+1) |𝑇 |
GoAT-P TLS 1.2 (𝑠+1)𝑒+2𝐼𝑎𝑒+𝐼 (𝑎+1) |𝑇 |
GoAT-P Roughtime (𝑠+1)𝑒+2𝐼 |𝑇 |

Table 5: GoAT proof sizes. 𝑒 stands for the size of a single element
in G or Z𝑝 of the Shacham-Waters PoRet scheme.

read times are largely constant except for an abrupt jump at 64GB.

This happens because the cache is no longer useful and therefore

we switch to using Direct I/O.
11

Computation costs: Table 4 presents the time taken for the Prove
and Verify operations. Here we assume a fixed epoch length and

vary the number of intervals. Recall that with more intervals per

epoch, the location guarantee gets better. As shown, with 100 in-

tervals, Prove takes about 2s and Verify takes around 3s. Concrete

costs are negligible for both operations (our AWS instance cost us

$0.376 per hour). Also note that the effect of number of intervals

on both Prove and Verify computation times is close to linear.

In the above experiment, we set the amplification factor 𝑎 to 1.

A similarly linear effect is expected if 𝑎 is varied.

Communication costs: With Roughtime anchors and the BLS12-

381 curve, GoAT-P proof size is 1941 + 720𝐼 bytes. The first half

of the equation (constant part) is contributed by the PoRet proofs,

while the second half by anchor transcripts. If 𝐼 =100,GoAT-P proof

size is 72.2KB with a dominating 70KB of anchor transcripts.

To show the dominant effect of anchor transcripts, we fix the

interval length to 𝛽 =1hr and plot the proof size per interval as the

epoch length is increased. The effect can be clearly seen in Fig. 6.

The plot converges at 720B, the size of 2 Roughtime transcripts.

The proof sizes for all GoAT variants are in Table 5. Using same

parameters as before (𝐼 =100), if a TLS anchor (amplification 𝑎=20)

is used, the proof size ofGoAT-P is 799.64KB.Whereas the proof size

of GoAT-H is around 4.5MB for TLS anchor (about 5.7x bigger than

GoAT-P) and 265.5KB for Roughtime anchor (about 3.6x bigger).

11
Direct I/O (the “O_DIRECT” flag) is a way to avoid entire caching layer in the kernel

and send the I/O directly to the disk.

11

10
0

10
1

10
2

10
3

10
4

1,000

2,000

720

Epoch length (hrs)

S
i
z
e
p
e
r
i
n
t
e
r
v
a
l
(
B
y
t
e
s
)

Figure 6: Proof size per interval of GoAT-P with a Roughtime (RT)
anchor against the epoch length. Interval length 𝛽 = 1hr. Dashed
line (720B) corresponds to the size of two RT transcripts.

5.2.1 Experiment. We devise a small experiment to demonstrate

the practical feasibility of GoAT, specifically how it deals with

network volatility. We focus on the NIGeoCommit protocol alone
as it is the sole operation affected by network conditions. Prior

works [29] have observed network stability over long time periods,

and conclude that network instability is frequent but most often

transient. So we handle failures in NIGeoCommit by simply retry-

ing until success. Concretely, the number of retries is capped at 30

with a gap of 1 second between retries. In this process, we count

the number of retries needed to succeed and the false rejection rate,

if any. Under ideal network conditions, 0 retries are expected.

We run the prover from two AWS instances located in North

Virginia (NV) and London (LON). Five anchors, screened for the

criteria described above, are picked near each. The interval length

is set to 𝛽 = 30mins and the NIGeoCommit protocol is run for 10

days at NV (525 intervals) and 7 days at LON (347 intervals).

Table 6 shows the ten anchors used (the three Roughtime anchors

are identifiable by their prefix). The first five anchors are used with

the AWS instance in NV, the remaining with the one in LON. The

2nd column shows the distance 𝑑 between the anchor and AWS

instance (provider), the 3rd column shows the amplification factor 𝑎,

and the 4th column shows the ROU radius 𝛿 alongwith the ratio 𝛿/𝑑 .
These three column values are computed as previously described.

Geolocation accuracy: The ROU radius to distance ratio 𝛿/𝑑
is useful to understand the key factors contributing to the qual-

ity of geolocation. Recall from Sec. 4 that this ratio is given by

(𝜔 + ((𝑡com + 𝑡start + 𝑡proc)𝑆max/2dist(𝐿A,𝐿P))). For providers far-
ther away from the anchor, we see the ratio converging to speedup

𝜔 = 3 suggesting that distance-to-the-anchor is the dominating

factor. But for nearby providers, we see high ratios going up to 46;

so the worse geolocation is caused by constants like 𝑡start, 𝑡proc.

As noted before, we choose parameters quite conservatively. If

finer geolocation is desired, aggressive parametrization can help.

For example, the variable 𝑡start (startup cost) alone is responsible for

nearly half the geolocation radius of “roughtime.chainpoint.org”.

It can be reduced with a refined network model, as we found that

only some anchors require this extra time. App. C discusses various

other optimization strategies.

TLS anchors achieve somewhat worse geolocation compared to

Roughtime ones due to the higher processing times; for example,

compare “american.edu” and “roughtime.chainpoint.org”.

Robustness of our network model: The last column in Table 6

shows a statistical picture of the number of retries required to suc-

ceed during the experiment period. The anchor “holycross.ac.uk”

Anchor name Distance 𝑎 ROU radius (𝛿/𝑑) #retries (SD)

roughtime.chainpoint.org 46.00 1 1187.27 (25.81) 0.06 (0.23)

roughtime.sandbox.google.com 115.33 1 1395.26 (12.10) 0.02 (0.13)

www.american.edu 43.99 60 1665.51 (37.86) 0.03 (0.47)

www.sunysuffolk.edu 450.29 34 2939.14 (6.53) 1.00 (0.06)

roughtime.int08h.com 1582.83 1 5797.76 (3.66) 0.01 (0.11)

holycross.ac.uk 35.26 61 1638.21 (46.46) 0 (0)

sruc.ac.uk 58.83 58 1722.94 (29.29) 0.67 (1.04)

gold.ac.uk 87.45 55 1816.92 (20.78) 1.02 (0.15)

nott.ac.uk 175.19 48 2081.89 (11.88) 2.26 (1.76)

www.ed.ac.uk 533.67 31 3223.57 (6.04) 0.003 (0.05)

Table 6: The ROU radius (𝛿) and the distance b/w anchor and closest
AWS instance (𝑑). All distances are in km. Last column shows the
mean, standard deviation (SD) of the number of retries.

behaved perfectly requiring no retries throughout. Whereas the

anchor “www.sunysuffolk.edu” was the only one to fail—it failed
in 4 of the 525 intervals, i.e., 0.7% false rejection. The four failures

happened in consecutive intervals suggesting a period of bad server

response times. We expect system designers to select several an-

chors in each location to avoid false rejections in practice. The

maximum number of retries required to succeed was 13 (seen once

with “sruc.ac.uk” and “nott.ac.uk”).

6 RELATEDWORK
A long line of works aim to prove correct file storage by a storage

provider, e.g., Proof of Retrievability [31, 40], Proof of Data Posses-

sion [13, 27] and more recently Proof of Replication [16, 21, 24, 25].

To the best of our knowledge, only few works [18, 47] aim to

prove file location. [18] works with small files as they rely on di-

rectly fetching file parts and leave open the task of combining

a PoRet with a proof-of-location (PoL). [47] combines Shacham-

Waters PoRet scheme with a PoL, making it the closest to our work.

But they make benign assumptions about storage providers, e.g.,

providers operate at normal network speeds. In contrast,GoAT con-

siders faster speed-of-light providers and yet achieves geolocation

accuracy similar to [47]. Digging deeper, this is due to our novel use

of fast PoRet commitments whereas [47] naïvely combines the SW

PoRet and PoL protocols. [47] also entrusts anchors with proof veri-

fication making the use of legacy anchors impossible unlike GoAT.
Most geolocation technologies in use today (e.g., GPS, Bluetooth

beacons [30]) rely on trusted verifiers and are hence unusable in

decentralized systems.

7 CONCLUSION
We have presented GoAT, a practical Proof of Geo-Retrievability
(PoGeoRet) scheme for file geolocation. GoAT leverages timestamp-

ing internet servers for proving location and the Shacham-Waters

PoRet scheme for proving file retrievability. We formalized the no-

tion of PoGeoRet soundness by extraction from devices located

within a geographic boundary. We also presented a few practical

model variants that facilitate realization of GoAT. GoAT has a

unique challenge model that permits batching proofs over several

intervals and verifying them at the end of an epoch. GoAT proofs

are small due to aggregation of PoRet proofs across the epoch. We

have demonstrated GoAT’s practicality through a fully functional

implementation and a real-world experiment.

12

REFERENCES
[1] 2021. Alexa Top Sites. https://www.alexa.com/topsites. [Accessed Apr

2021].

[2] 2021. Content delivery network. https://en.wikipedia.org/wiki/Content_
delivery_network. [Accessed Apr 2021].

[3] 2021. Cryptocurrency Prices by Market Cap. https://coinmarketcap.com/
[Accessed May 2021].

[4] 2021. Drand - Distributed Randomness Beacon. https://drand.love/
[Accessed May 2021].

[5] 2021. Filecoin Aims to Use Blockchain to Make Decentralized Storage Resilient

and Hard to Censor. https://www.infoq.com/news/2021/02/filecoin-
blockchain-storage/ [Accessed May 2021].

[6] 2021. Linux-native asynchronous I/O access library. https://pagure.io/
libaio. [Accessed Apr 2021].

[7] 2021. Metric space. https://en.wikipedia.org/wiki/Metric_space.
[Accessed Apr 2021].

[8] 2021. SSD UserBenchmarks - 1058 Solid State Drives Compared.

https://ssd.userbenchmark.com/. [Accessed Apr 2021].

[9] A. Langley A. Malhotra and W. Ladd. 2020. Roughtime. https:
//datatracker.ietf.org/doc/html/draft-roughtime-aanchal.

[10] Amazon. 2021. AWS EC2 Costs. https://aws.amazon.com/ec2/pricing/on-
demand/. [Accessed Apr 2021].

[11] Amazon. 2021. AWS S3. https://aws.amazon.com/s3/. [Accessed Apr 2021].

[12] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and

K. Liao. [n.d.]. RELIC is an Efficient LIbrary for Cryptography.

https://github.com/relic-toolkit/relic.
[13] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D.

Song. 2007. Provable Data Possession at Untrusted Stores. In ACM CCS. 598–609.
[14] Mihir Bellare and Adriana Palacio. 2004. The knowledge-of-exponent assump-

tions and 3-round zero-knowledge protocols. In Annual International Cryptology
Conference. Springer, 273–289.

[15] J. Benet. 2014. IPFS - Content Addressed, Versioned, P2P File System. CoRR
abs/1407.3561 (2014). arXiv:1407.3561 http://arxiv.org/abs/1407.3561

[16] Juan Benet, David Dalrymple, and Nicola Greco. 2017. Proof of replication.

Protocol Labs, July 27 (2017), 20.

[17] J Benet and N Greco. 2018. Filecoin: A decentralized storage network. Protoc.
Labs (2018), 1–36.

[18] Karyn Benson, Rafael Dowsley, and Hovav Shacham. 2011. Do you know where

your cloud files are?. In Proceedings of the 3rd ACM workshop on Cloud computing
security workshop. 73–82.

[19] Ilker Nadi Bozkurt, Anthony Aguirre, Balakrishnan Chandrasekaran, P Brighten

Godfrey, Gregory Laughlin, Bruce Maggs, and Ankit Singla. 2017. Why is the

internet so slow?!. In International Conference on Passive and Active Network
Measurement. Springer, 173–187.

[20] David Cash, Alptekin Küpçü, and Daniel Wichs. 2017. Dynamic proofs of

retrievability via oblivious RAM. Journal of Cryptology 30, 1 (2017), 22–57.

[21] Ethan Cecchetti, Ben Fisch, Ian Miers, and Ari Juels. 2019. Pies: Public

incompressible encodings for decentralized storage. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. 1351–1367.

[22] M. Clark. Mar 11, 2021. NFTs, explained. https://www.theverge.
com/22310188/nft-explainer-what-is-blockchain-crypto-art-faq
[Accessed Apr 2021].

[23] T. Dierks and E. Rescorla. 2008. TLS 1.2 RFC 5246. https://tools.ietf.org/
html/rfc5246.

[24] Ben Fisch. 2018. PoReps: Proofs of Space on Useful Data. IACR Cryptol. ePrint
Arch. 2018 (2018), 678.

[25] Ben Fisch, Joseph Bonneau, Nicola Greco, and Juan Benet. 2018. Scaling proof-of-

replication for filecoin mining. Benet//Technical report, Stanford University (2018).

[26] Phillipa Gill, Yashar Ganjali, Bernard Wong, and David Lie. 2010. Dude, where’s

that IP? Circumventing measurement-based IP geolocation. In Proceedings of
the 19th USENIX conference on Security. 16–16.

[27] Christian Hanser and Daniel Slamanig. 2013. Efficient simultaneous privately and

publicly verifiable robust provable data possession from elliptic curves. In 2013
International Conference on Security and Cryptography (SECRYPT). IEEE, 1–12.

[28] Elizabeth (Liz) Harding, Lisa J. Acevedo, and Lindsay R. Dailey. 2021. Data

Localization and Data Transfer Restrictions. https://www.natlawreview.
com/article/data-localization-and-data-transfer-restrictions/.
[Accessed Aug 2021].

[29] Toke Høiland-Jørgensen, Bengt Ahlgren, Per Hurtig, and Anna Brunstrom. 2016.

Measuring latency variation in the internet. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies. 473–480.

[30] Kang Eun Jeon, James She, Perm Soonsawad, and Pai Chet Ng.

2018. BLE Beacons for Internet of Things Applications: Survey, Chal-

lenges, and Opportunities. IEEE Internet of Things Journal (2018).

https://doi.org/10.1109/JIOT.2017.2788449
[31] Ari Juels and Burton S Kaliski Jr. 2007. PORs: Proofs of retrievability for large

files. In Proceedings of the 14th ACM conference on Computer and communications

Non-interactive Proof of Geo-Retrievability
• (sk,pk)←NIKGen(1𝜆) : Generate key pair. Run by the user.

• (𝐹 ∗,𝜂,pp) ←NISetup(sk,pk,𝐹) : Runs setup of the underlying PoRet scheme

to generate 𝐹 ∗ , which contains the file plus the generated data, its handle 𝜂,

and some public parameters pp. Run by the user.

• 𝜋geo ← NIProve(𝜂,𝑅) : On input file handle 𝜂 and a geographic region 𝑅,

generates a proof of geo-retrievability 𝜋geo
. Run by the prover. It consists of

two sub-functions:

– 𝐶geo ← NIGeoCommit(𝜂, 𝑅) : On input file handle 𝜂 and a region 𝑅,

generate a geo-commitment 𝐶geo
. An interactive protocol between the

prover and anchor. Furthermore, the protocol com←NICommit(𝝁) is a
sub-function of NIGeoCommit which takes a file fragment 𝝁 as input and

generates a commitment com.

– 𝜋PoRet←NIPoRCompute(𝜂,S) : On input file handle 𝜂 and a set of PoRet

challenges S, compute one or more proofs of retrievability.

• 0/1←NIVerify(pp,𝑅,c,𝜋geo) : The verifier checks that the file is in the desired

region 𝑅 by verifying the proof 𝜋geo
using the challenge, public params.

Figure 7: NIPoGeoRet API.

security. 584–597.
[32] Ethan Katz-Bassett, John P John, Arvind Krishnamurthy, David Wetherall,

Thomas Anderson, and Yatin Chawathe. 2006. Towards IP geolocation using

delay and topology measurements. In Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement. 71–84.

[33] Protocol Labs. July 19, 2017. Filecoin: A Decentralized Storage Network.

https://filecoin.io/filecoin.pdf. [Accessed Apr 2021].

[34] Storj Labs. October 30, 2018. Storj: A Decentralized Cloud Storage Network

Framework. https://www.storj.io/storjv3.pdf. [Accessed Apr 2021].

[35] Sian-Jheng Lin, Tareq Y Al-Naffouri, Yunghsiang S Han, and Wei-Ho Chung.

2016. Novel polynomial basis with fast Fourier transform and its application

to Reed–Solomon erasure codes. IEEE Transactions on Information Theory 62,

11 (2016), 6284–6299.

[36] Chris Mellor. January 25, 2021. SSDs will crush hard drives in the enterprise,

bearing down the full weight of Wright’s Law. https://blocksandfiles.com/
2021/01/25/wikibon-ssds-vs-hard-drives-wrights-law/. [Accessed

Apr 2021].

[37] Christopher Patton. 2018. Roughtime: Securing Time with Digital Signatures.

https://blog.cloudflare.com/roughtime/. [Accessed Apr 2021].

[38] Qualys. April 11, 2021. SSL Pulse. https://www.ssllabs.com/ssl-pulse/.
[Accessed Apr 2021].

[39] Paul Reinheimer and Will Roberts. [n.d.]. Global Ping Statistics→Manhattan.

https://wondernetwork.com/pings/Manhattan. [Accessed Apr 2021].

[40] Hovav Shacham and Brent Waters. 2008. Compact proofs of retrievability.

In International conference on the theory and application of cryptology and
information security. Springer, 90–107.

[41] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. 2013. Practical

dynamic proofs of retrievability. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. 325–336.

[42] Amin Shokrollahi. 2006. Raptor codes. IEEE transactions on information theory
52, 6 (2006), 2551–2567.

[43] Stuart Stock. 2021. Roughenough. https://github.com/int08h/roughenough.
[Accessed Apr 2021].

[44] Eduard Suica. 2021. Single C file TLS 1.2/1.3 implementation.

https://github.com/eduardsui/tlse/. [Accessed Apr 2021].

[45] D. Vorick and L. Champine. November 29, 2014. Sia: Simple Decentralized

Storage. https://sia.tech/sia.pdf. [Accessed Apr 2021].

[46] Yong Wang, Daniel Burgener, Marcel Flores, Aleksandar Kuzmanovic, and

Cheng Huang. 2011. Towards Street-Level Client-Independent IP Geolocation..

In NSDI, Vol. 11. 27–27.
[47] Gaven J Watson, Reihaneh Safavi-Naini, Mohsen Alimomeni, Michael E Locasto,

and Shivaramakrishnan Narayan. 2012. Lost: location based storage. In Proceed-
ings of the 2012 ACM Workshop on Cloud computing security workshop. 59–70.

A SUPPORTING TLS 1.2 ANCHORS
A.1 Low-resultion anchors
This section deals more broadly with supporting low-resolution

anchors.

Chaining of the two operations is done in a similar fashion to

before. In total, 𝑎 PoRet commitment computations and 𝑎+1 anchor
pings take place. We refer to 𝑎 as the amplification factor. Note

13

https://www.alexa.com/topsites
https://en.wikipedia.org/wiki/Content_delivery_network
https://en.wikipedia.org/wiki/Content_delivery_network
https://coinmarketcap.com/
https://drand.love/
https://www.infoq.com/news/2021/02/filecoin-blockchain-storage/
https://www.infoq.com/news/2021/02/filecoin-blockchain-storage/
https://pagure.io/libaio
https://pagure.io/libaio
https://en.wikipedia.org/wiki/Metric_space
https://ssd.userbenchmark.com/
https://datatracker.ietf.org/doc/html/draft-roughtime-aanchal
https://datatracker.ietf.org/doc/html/draft-roughtime-aanchal
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/s3/
https://github.com/relic-toolkit/relic
https://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
https://www.theverge.com/22310188/nft-explainer-what-is-blockchain-crypto-art-faq
https://www.theverge.com/22310188/nft-explainer-what-is-blockchain-crypto-art-faq
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://www.natlawreview.com/article/data-localization-and-data-transfer-restrictions/
https://www.natlawreview.com/article/data-localization-and-data-transfer-restrictions/
https://doi.org/10.1109/JIOT.2017.2788449
https://filecoin.io/filecoin.pdf
https://www.storj.io/storjv3.pdf
https://blocksandfiles.com/2021/01/25/wikibon-ssds-vs-hard-drives-wrights-law/
https://blocksandfiles.com/2021/01/25/wikibon-ssds-vs-hard-drives-wrights-law/
https://blog.cloudflare.com/roughtime/
https://www.ssllabs.com/ssl-pulse/
https://wondernetwork.com/pings/Manhattan
https://github.com/int08h/roughenough
https://github.com/eduardsui/tlse/
https://sia.tech/sia.pdf

Geo-commitment generation (NIGeoCommit) between P and A

ProtA : Follow the standard protocol (TLS 1.2 / Roughtime).

ProtP : On input {𝜂,pp }, runs the below protocol.

If ΓA ≤ 1ms, set the amplification factor 𝑎=1. Or else 𝑎= ⌊ΓA/Δ(A,P) ⌋−1. Select
a random 𝑁1 , 𝑖 =1 and do the following:

(1) (Anchor ping) Request time from the anchor,{𝑡𝑖 ,𝑁𝑖 ,𝜎𝑖 } ←
A.GetAuthTime(Ni) . If 𝑖 =𝑎+1, then break.

(2) (PoRet commitment) Run S𝑖 ← PoRet.Chal(𝜂, pp, 𝜎𝑖) , com𝑖 ←
PoRet.Commit(𝜂,S𝑖) . Set 𝑁𝑖+1 =com𝑖 , 𝑖 =𝑖+1 and repeat from step 1.

P saves𝐶geo = {𝑇𝑖 }𝑎+1𝑖=1 where𝑇𝑖 = {𝑡𝑖 ,𝑁𝑖 ,𝜎𝑖 } denotes the transcript.
Geo-commitment verification by V

On receiving seed, epoch number 𝑒 , interval number𝑚, anchor public key pkA
and the geo-commitment𝐶geo =

{
{𝑇𝑖 }𝑎+1𝑖=1 , {com𝑖 }𝑎𝑖=1

}
, the auditor V does:

• Set 𝑁1 =seed and ∀𝑖 ∈ [1,...,𝑎],𝑁𝑖+1 =com𝑖 .

• Verify anchor signatures using pkA , ∀𝑖 ∈ [1,...,𝑎+1], VerifypkA (𝜎𝑖 , {𝑡𝑖 ,𝑁𝑖 })
where𝑇𝑖 = {𝑡𝑖 ,𝜎𝑖 } .

• Check that the time corresponds to epoch 𝑒 , interval𝑚.

• Check that the timestamps are close:

– If 𝑎>1, check that the time is same, 𝑡1 =𝑡2 = ...=𝑡𝑎+1 .
– If 𝑎=1, check that 𝑡2−𝑡1 ≤Δ(A,P) .

Figure 8: Geo-commitment protocols.

Shacham-Waters PoRet scheme
Scheme parameters: A bilinear group (𝑝,G,G𝑇 ,𝑒,𝑔) . Number of challenges 𝑘 .

Number of sectors per block 𝑠 . An erasure code with rate 𝜌 . SW-H uses VC=HVC
and SW-P uses VC=CPVC.

• (sk,pk) ← SW.KGen(1𝜆) : Pick key pair (ssk, spk) ← KGen(1𝜆) . Choose
𝛼 ∈Z𝑝 at random and compute 𝑔𝛼 ∈G. The secret key is sk= (ssk,𝛼) while
the public key is pk= (spk,𝑔𝛼) .

• (𝐹 ∗,𝜂,pp) ← SW.Setup(sk,pk, 𝐹): Apply erasure code over 𝐹 to obtain 𝐹 ′.
Split 𝐹 ′ into 𝑛 blocks, each 𝑠 sectors long

{
𝑚𝑖 𝑗

}
1≤𝑖≤𝑛,1≤ 𝑗≤𝑠 with𝑚𝑖 𝑗 ∈ Z𝑝 .

Pick 𝑠 elements at random {𝑢𝑖 }𝑠𝑖=1 ∈ G. For each 𝑖 ∈ {1,...,𝑛 } compute

𝜎𝑖 ← (𝐻 (𝑖) .
∏𝑠

𝑗=1 𝑢
𝑚𝑖𝑗

𝑗
)𝛼 where 𝐻 is a hash-to-group function. Denote

𝐹 ∗ as the file together with 𝜎𝑖 ,1 ≤ 𝑖 ≤ 𝑛. The public params
a pp contains{

pk,𝑛, {𝑢𝑖 }𝑠𝑖=1
}
along with a signature generated with ssk. 𝜂=H(𝐹 ∗) .

• {𝑐𝑖 ,𝑣𝑖 }𝑘𝑖=1← SW.Chal(𝜂,pp,seed) : Derive 𝑘 values 𝑐𝑖 ∈ [𝑛], 𝑣𝑖 ∈ Z𝑝 from

the input seed. Return {𝑐𝑖 ,𝑣𝑖 }𝑘𝑖=1 .
• 𝐶𝝁 ← SW.Commit(𝜂, {𝑐𝑖 ,𝑣𝑖 }𝑘𝑖=1) : Compute ∀𝑗 ∈ [1, ...,𝑠],𝜇 𝑗 ← Σ𝑘

𝑖=1
𝑣𝑖𝑚

′
𝑖 𝑗

where 𝑚′𝑖 𝑗 = 𝑚 (𝑐𝑖) 𝑗 . Commit to the vector 𝝁 =
{
𝜇 𝑗

}𝑠
𝑗=1

by

𝐶𝝁←VC.Commit(𝝁) .
• 𝜋 ← SW.Prove(𝜂,{𝑐𝑖 ,𝑣𝑖 }𝑘𝑖=1) : Compute 𝜎 =

∏𝑘
𝑖=1 𝜎

𝑣𝑖
(𝑐𝑖)

and

∀𝑗 ∈ [1,...,𝑠],𝜇 𝑗←Σ𝑘
𝑖=1

𝑣𝑖𝑚
′
𝑖 𝑗 where𝑚

′
𝑖 𝑗 =𝑚 (𝑐𝑖) 𝑗 . Output 𝜋 = {𝝁,𝜎 } where

𝝁=
{
𝜇 𝑗

}𝑠
𝑗=1

.

• 0/1 ← SW.Verify(pp,{𝑐𝑖 ,𝑣𝑖 }𝑘𝑖=1 , 𝐶𝝁 , 𝜋) : Receive 𝜋 = {𝝁,𝜎 }. Check

signature on 𝑡 with spk and parse it receive {𝑢𝑖 }𝑠𝑖=1 . Check if

𝑒 (𝜎,𝑔) =𝑒 (∏𝑘
𝑖=1 (𝐻 (𝑐𝑖))𝑣𝑖

∏𝑠
𝑖=1𝑢

𝜇𝑖
𝑖
,pk) . Check if VC.Verify(𝝁,𝐶𝝁) =1.

a
Referred to in the original Shacham-Waters paper as tag.

Figure 9: The Shacham-Waters PoRet schemes with an extra
commitment step. SW-H, SW-P differ in the choice of VC scheme.

that this modification applies to both GoAT variants, GoAT-H and

GoAT-P.
The value 𝑎 is set based on the exact resolution offered by an

anchor. For example if the anchor resolution is in seconds and

the time difference Δ(𝐿A,𝐿P) is 50ms, then 20 consecutive proofs

(when started at a one-second boundary in the anchor’s clock)

will have the same timestamp, so 𝑎 = 19 (since 𝑎 + 1 pings are

needed). More generally, if the resolution of an anchor is ΓA, we

Proof of Retrievability
• (sk,pk)←PoRet.KGen(1𝜆) : Generate key pair.

• (𝐹 ∗,𝜂,pp)←PoRet.Setup(sk,pk,𝐹) : 𝐹 ∗ contains the encoded file, 𝜂 denotes a

unique file handle and pp contains the public parameters. We model the public

key pk as a part of pp.
• 𝐹 ← PoRet.Extract(𝜂, pp) : An interactive function between a prover and

verifier to recover original file 𝐹 .

• 𝑐←PoRet.Chal(𝜂,pp,seed) : Derive a challenge 𝑐 from the input seed for the

file 𝜂.

• 𝐶← PoRet.Commit(𝜂,𝑐) : Generate a commitment 𝐶 to the proof based on

the challenge 𝑐 .

• 𝜋←PoRet.Prove(𝜂,𝑐) : Generate a proof 𝜋 based on the challenge 𝑐 .

• 0/1← PoRet.Verify(pp,𝑐,𝐶,𝜋) : Verify both the commitment 𝐶 and proof 𝜋

using the public parameters pp.

Figure 10: Publicly verifiable PoRet API. PoRet.Commit is the only
addition compared to prior modeling [31].

Correlated Pedersen commitment CPVC

Params: Group G and it’s support Z𝑝 . Supported vector size 𝑠 . Generators

(ℎ1,ℎ2,...,ℎ𝑠)←G and (ℎ𝑎
1
,ℎ𝑎

2
,...,ℎ𝑎𝑠)←G.

• 𝐶v←CPVC.Commit(v) : Receive v= {𝑣𝑖 }𝑠𝑖=1 where ∀𝑖,𝑣𝑖 ∈Z𝑝 . Output
𝐶v = (

∏𝑠
𝑖=1ℎ

𝑣𝑖
𝑖
,
∏𝑠

𝑖=1ℎ
𝑎𝑣𝑖
𝑖
) .

• 0/1←CPVC.Verify(v,𝐶v) : Check if𝐶v = (
∏𝑠

𝑖=1ℎ
𝑣𝑖
𝑖
,
∏𝑠

𝑖=1ℎ
𝑎𝑣𝑖
𝑖
) .

Hash-based commitment HVC

• 𝐶v←HVC.Commit(v) : Output𝐶v =H(v) .
• 0/1←HVC.Verify(v,𝐶v) : Check if𝐶v =H(v) .

Figure 11: Pedersen and Hash-based Vector Commitment scheme

set 𝑎= ⌊ΓA/Δ(𝐿A,𝐿P)⌋−1.12 Below, we explain how to time proof

execution in order to ensure receipt of 𝑎+1 transcripts with the

same timestamp.

In Prove, the prover computes a single PoRet similar to before,

leveraging the aggregability of SW. We also make a change to Ver-
ify: instead of checking the difference between timestamps, the

verifier counts if 𝑎+1 anchor transcripts have the same timestamp.

Other steps are similar to before.

A general NIGeoCommit protocol for any anchor, low- or high-

resolution, is specified in Fig. 8, in the paper appendix.

When to start execution?:We have a question of when to initiate

the protocol so that 𝑎+1 anchor transcripts have the same time. A

simple approach is to continue executing proofs for roughly double

the amplification factor 𝑎, specifically to use an augmented amplifi-

cation factor 𝑎′=2⌈ΓA/Δ(𝐿A,𝐿P)⌉−1. Irrespective of the start time

in this case, the resulting sequence of transcripts are guaranteed

to contain a (𝑎+1)-length sub-sequence with the same timestamp

(given stable network conditions). The final proof will only include

the desired sub-sequence; extra transcripts can be discarded. The

intuition here is that 𝑎′ executions guarantees seeing two time

changes (i.e., three distinct timestamps), therefore one resolution

tick is fully covered, which in turn guarantees ⌊ΓA/Δ(𝐿A,𝐿P)⌋ tran-
scripts will have the same timestamp. As noted, this will not work

if the network conditions are unstable, and other mechanisms like

retries are needed in practice.

Effect on geolocation: The use of amplification has a small ef-

fect on the radius of ROU, explained through an example. Suppose

Δ(𝐿A,𝐿P) = 250ms, ΓA = 1000ms. Applying the above formula, we

12
In theory, 𝑎 = ⌊ΓA/Δ(𝐿A,𝐿P) ⌋ also works as 𝑎 · Δ(𝐿A,𝐿P) ≤ ΓA . But for perfect

divisors, e.g., Δ(𝐿A, 𝐿P) = 50ms, this can only be achieved with perfect time

synchronization and ideal network conditions, making it impossible in practice.

14

NIPoGeoRet scheme between U, P, V
Scheme parameters: List of anchors T and their corresponding public keys.

Interval length 𝛽 , number of intervals 𝐼 .

ProtU,ProtP,ProtV :

• (sk,pk)←KGen(1𝜆) : U runs (sk,pk)←PoRet.KGen(1𝜆) .
• (𝐹 ∗,𝜂,pp) ←NISetup(sk,pk,𝐹) : U runs (𝐹 ∗,𝜂,pp) ←PoRet.Setup(sk,pk,𝐹)

and picks a geographic region 𝑅 = (𝐿;𝛿𝐿) . Values {𝐹 ∗,pp,𝑅 } are given to P
situated at 𝐿.

• 𝐶geo ← NIGeoCommit(𝜂, 𝑅) : P selects an anchor A ∈ T based on the

input region 𝑅 and generates geo-commitments via NIGeoCommit (See

Fig. 8) once every interval until the end of epoch. Note that NICommit(𝝁)
= PoRet.VC.Commit(𝝁) .

• 𝜋PoRet←NIPoRCompute(𝜂,S) : Let S= {S𝑗 }𝑁𝑗=1 denote the PoRet challenge
sets derived in NIGeoCommit. The process differs by the PoRet scheme:

– SW-H: Run ∀𝑗,𝜋PoRet
𝑗
←SW-H.Prove(𝜂,S𝑗) . 𝜋PoRet = {𝜋PoRet

𝑗
}𝑁
𝑗=1

.

– SW-P: P derives 𝑁 random coefficients in Z𝑝 from the last PoRet commit-

ment, {𝑟 𝑗 }𝑁𝑗=1← PRF(com𝑁) . Denote S𝑗 = {𝑐𝑖 𝑗 ,𝑣𝑖 𝑗 }𝑘𝑖=1 . Apply random

coefficients, ∀𝑗, S∗𝑗 = {𝑐𝑖 𝑗 , 𝑟 𝑗 𝑣𝑖 𝑗 }𝑘𝑖=1 and merge all the sets to create,

S∗ =∪𝑁
𝑗=1
S∗𝑗 . Compute 𝜋PoRet←SW-P.Prove(𝜂,S∗) .

• 𝜋geo←NIProve(𝜂,𝑅) : The two sub-functions of NIProve are specified above.
The proof of geo-retrievability 𝜋geo

consists of geo-commitments output by

NIGeoCommit and the proof(s) of retrievability output by NIPoRCompute.
• 0/1 ← NIVerify(pp, 𝑅, 𝜋geo) : Unpack 𝜋geo = {{𝐶geo

𝑚 }𝐼𝑚=1
, 𝜋PoRet }. The

geo-commitments are verified first using the protocol in Fig. 8. Then the proof

of retrievability 𝜋PoRet
is verified using the steps described below.

– SW-H: Check ∀𝑗, SW-H.Verify(pp, c𝑗 , com𝑗 , 𝜋
PoRet
𝑗
) = 1 where

𝜋PoRet = {𝜋PoRet
𝑗
}𝑁
𝑗=1

.

– SW-P: Denote 𝜋PoRet = {𝝁,𝜎 }. V generates random coefficients

{
𝑟 𝑗

}𝑁
𝑗=1

and aggregate challenge set S∗ similar to how P does in Prove. V computes

𝐶 =
∏𝑁

𝑗=1 (com𝑗)𝑟 𝑗 and checks if SW-P.Verify(pp,S∗,𝐶,𝜋PoRet) =1.

Figure 12: The GoAT proof of geo-retrievability schemes. It includes
both the GoAT-H and GoAT-P variants that internally use SW-H and
SW-P PoRet schemes respectively.

get 𝑎=3, i.e., 4 pings are needed. But this leaves some “extra time”—

for example, if the anchor’s clock times at the moment of receipt

of the 4 GetAuthTime requests are 𝑥 , 𝑥 +250, 𝑥 +500, 𝑥 +750 (all

in ms), then an adversary still has about 250ms left in the end (As-

sume 𝑥 is a second boundary). So an adversary can spend an extra

250/𝑎=83.33ms on each of the 𝑎 PoRet commitment computations

and thus position the file further from the target location than with

no amplification. Such manipulation will go undetected because

the difference between the last and first anchor clock times is still

within a resolution tick, 750+83.33·3=999.99ms< ΓA.
The precise extra time available due to amplification is 𝑒 =

ΓA − 𝑎 · Δ(𝐿A, 𝐿P). Distributing it equally leads to an extra 𝑒/𝑎
time per commitment computation. For practical values, the ex-

tra time is small and hence its impact is minimal. For example, if

Δ(𝐿A,𝐿P) =50ms and ΓA =1000ms, then 𝑒 =50/19=2.6ms causing

about 260km increase compared to that without amplification.

GoAT security:Considering both high-resolution and low-resolution
anchors, the following equation describes GoAT’s geolocation radii.

Say the target region is a single location, 𝑅target = (𝐿;0). Then
the region of uncertainty achieved by GoAT (both GoAT-H and

GoAT-P) is a circle centered at anchor’s location with radius 𝛿𝐿
given by:

𝛿𝐿 =

{
Δ(𝐿A,𝐿) ·𝑆max/2 if ΓA ≤ 1ms.

(ΓA/(⌊ΓA/Δ(𝐿A,𝐿)⌋−1)) ·𝑆max/2 otherwise.

A.2 Changes to Commit
As noted in the main body, the PoRet commitments in GoAT-P
won’t fit into the TLS nonce field. For example, the size of each

group element in our implementation is 20 bytes, so the SW-P PoRet

commitment is 40 bytes whereas the TLS nonce is 32 bytes only.

So we modify the PoRet commitment protocol by hashing the

previous commitment to fit in the nonce field (which is essentially

in turn modifying the Commit protocol). The output of the Prove
protocol, i.e., the PoGeoRet proof will now include all the PoRet

commitments generated during the epoch.

If the number of intervals is 1, the proof will consist of a proof-

of-retrievability, 𝑎 PoRet commitments and 𝑎+1 anchor transcripts.

B FORMALISM EXTENSIONS
B.1 Non-interactive

Proofs of Geo-Retrievability
Non-interactive Proofs of Geo-Retrievability or NIPoGeoRet allows

any newcomer to verify that the prover indeed had the file inside

the region of uncertainty (ROU), during a specified time duration.

The NIPoGeoRet API (Fig. 7) is almost the same as the PoGeoRet one

except that the function Chal is removed. We attach the preamble

NI to other API functions, e.g., NIProve and NIVerify.
Relation to GoAT: Recall that GoAT is a non-interactive protocol.

So the API in Fig. 7 map to the GoAT protocol specified in Fig. 12.

For ease of explaining GoAT, we divide NIProve into two sub-

functions, NIGeoCommit and NIPoRCompute. The former speci-

fies the interaction with anchor A to derive challenges. NIGeoCom-
mit for GoAT is specified in Fig. 8.

Modeling time: In our previous modeling for interactive PoGe-

oRet, we relied on the verifier to keep track of time during the

security experiments. Instead now we introduce a notion of time

into the definition. Each system entity maintains an internal clock.

Clocks need not be synchronous, but we assume that clock drift

is negligible. The clock time of say an anchor A is given by timeA.
If the true time is given by true_time, then the clock offset of an

entity A is (timeA− true_time). The offsets of all anchors are as-
sumed to be public (this can be observed once during a setup phase

in practice). Note that the NIVerify function relies on these clock

offsets to judge if the proof is valid.

Security properties: The completeness definition is the same as

before, except that no challenges are issued by the verifier.

The changes to the security experiments related to soundness

are also minimal. The setup experiment is same as before, except

that the public information pp could also contain extra information

such as anchor public keys. The challenge experiment now does not

involve sending challenges to the prover. Instead, the prover com-

putes NIPoGeoRet proofs itself, and submits a proof at the end of

an epoch. This proof is verified using NIVerify. And the soundness

definition is the same as before.

B.2 Rational file retention
We expand on the rational file retention assumptions made in

Sec. 3.5.2 now. The device API is largely same as in Fig. 3 except a

change to the createDevice function. The greedy storage algorithm

greedyFill is in Fig. 13.

15

Modified device oracle Odev

1 :

State: A region 𝑅in
. Key-value pairs D[did] = (loc, cap,mem) where the

key did is the device identifier, loc is its location, cap is the memory capacity

and mem is a list denoting the memory. A list 𝜇rec to track inputs to the

commitment oracle Oin
com .

2 : init(𝑅) : Set 𝑅in =𝑅. Not callable by the adversary.

3 : createDevice(did,loc,cap) : If did ∈ D return ⊥. Set D[did]= (loc,cap,_) .

4 :

exec(did,func)→𝑜𝑢𝑡 : If did∉D return ⊥. Compute func and return its out-

put. func can read / write to D[did] .mem or call any of Odev functions inter-
nally. If Oin

com is called with input 𝝁 and D[did] .loc ∈𝑅in
, do 𝜇rec .append(𝝁) .

5 :
sendTo(did1,did2,data) : If data ∈ D[did1] .mem,

D[did2] .mem.append(data) .
6 : erase(did, 𝑗) : Erase index 𝑗 , D[did] .mem.erase(𝑗) . Do D[did] .cap−=1.
7 : seenInROU(𝜇all) : Return 1 if ∀𝝁 ∈𝜇all,𝝁 ∈𝜇rec holds.

Greedy allocation algorithm greedyFill(mem)
𝑐𝑢𝑟 =0

for 𝑅 in{𝑅in,𝑅out }
for did inD
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 =D[did] .cap− |D [did] .mem |
if 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ≤ 0 continue
if D[did] .loc ∈𝑅 then

D[did] .mem.append(mem[𝑐𝑢𝑟 :𝑐𝑢𝑟 +𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒])
𝑐𝑢𝑟+=𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

endif

endfor

endfor

Figure 13: The modified device API.

#sectors Time (ms)

64 0.89 (0.01)

128 1.53 (0.01)

256 2.99 (0.01)

Table 7: Time taken for SWPoRet commitwithout the file read oper-
ation as a function of the number of sectors. Averaged over 10 runs.

Note that the memory is composed of many blocks. The size of

each block is dependent on the protocol. For the GoAT protocol,

this should be the same as the block size used in the PoRet so that

all bits in a block are in the same device.

C PRACTICAL
CONSIDERATIONS AND FUTUREWORK

C.0.1 Parameterization trade-offs. We discuss various trade-offs

arising in GoAT parameterization now.

The number of sectors 𝑠 impacts the proof sizes, geolocation

quality and the storage overhead. Higher 𝑠 leads to reduced storage

overhead but at the cost of relatively poorer geolocation and worse

proof size. Note that higher 𝑠 leads to increased PoRet commit times

and thereby worse geolocation (eq. (1)).

The number of challenges 𝑘 and the code rate 𝜌 need to be set

following the constraint given in Thm. 1. As shown in Sec. 5.1.3,

for practical values of 𝜌 , the number of challenges is around 200. 𝑘

and 𝜌 impact geolocation quality and storage overhead respectively.

There is a direct trade-off between the two — higher code rate (𝜌)

leads to less storage overhead but requires setting a higher number

of challenges (𝑘), which leads to higher PoRet commit times and

worse geolocation.

C.0.2 Anchor clocks. For GoAT to work, we assume that the

clock drift of anchors is negligible. This assumption was made to

ensure that clock offsets can be observed once and used later on,

avoiding the need for any time synchronization. Clock drifts in

practice tend to be much smaller than the interval lengths in GoAT,
and hence this assumption is reasonable.

C.0.3 Finding anchors. In Sec. 5, we used just the basic require-

ments in deciding whether a given internet server can be used as an

anchor. In practice though, other considerations such as reliability

(does the anchor have stable response times) and trustworthiness (is

the anchor reputable enough) will have to be taken into account. As

noted before, if relying on existing internet servers is undesirable,

anchors for GoAT can be purpose-built.

C.0.4 Optimizations to improve geolocation accuracy. One set
of ideas is related to improving the network model. Our current

network model is unified, i.e., it assumes the network conditions

across the globe are same for simplicity. Taking endpoint locations

into account can improve geolocation quality in areas with better

connectivity. Moreover a network model that avoids the blanket

use of a startup cost 𝑡start (we set it to 5ms) is desirable given that it

causes upto 2x worse geolocation for nearby anchors. In our small

measurement study, we found a lot of variance in the round trip

times for nearby locations. But since GoAT can deal with short-

lived network variances better due to the use of flexible-challenge

model, a smaller value for 𝑡start could be used. More experiments

to understand if this idea can be used in practice are needed.

Another idea is to optimize the PoRet commit compute time (we

set it to 2ms). This can for example be done by finding a pairing-

friendly curve that has faster vector commit times and optimizing

code runtime.

With regards to the choice of anchors, using Roughtime servers

is clearly beneficial if possible due to their low processing times.

Otherwise finding TLS servers that respond quickly is suggested,

i.e., have low processing times. Overall Roughtime is a better choice

of anchor, both from a performance perspective and an ethical stand-

point since our use of TLS might be seen as abusing it. We hope

that Roughtime gains more adoption in the future.

Several other optimization opportunities exist: reducing the

client processing time by optimizing client-code (we allocate 1.5ms

which could potentially be reduced to almost zero), using an anchor-

specific model for processing times, and perhaps even deploying

new anchors with fast connectivity and low processing times.

C.0.5 Constructing a proof-of-space. One potentially impactful

research direction is to extend GoAT to construct a Proof-of-Space.

Currently, GoAT can only prove that a file 𝐹 is geographically

retrievable from a set of different regions. But if the file 𝐹 is ad-

versarially chosen, the prover might only actually need to store a

small seed.

16

D SECURITY PROOFS
We now provide a proof sketch for Thm. 1. We primarily focus

on GoAT-P with a Roughtime anchor adding notes about how the

proof extends to GoAT-H (or) to TLS anchors where needed.

Recall that theGoAT-P proof 𝜋geo consists of 𝐼 geo-commitments

and a PoRet proof. Each geo-commitment 𝐶geo
consists of 𝑎+1 an-

chor transcripts and all but the first transcript contain a PoRet

commitment. In total, 𝑁 = 𝐼𝑎 PoRet commitments are in a proof.

Similarly, the GoAT-H proof consists of 𝑁 = 𝐼𝑎 PoRet proofs and 𝐼

geo-commitments.

We prove soundness of GoAT in four steps.

(1) Prove that the 𝑁 PoRet commitments and the PoRet proof(s)

are correctly computed, i.e., the PoRet verification protocol

(PoRet.Verify) part of Verify must detect otherwise.

(2) A combination of timing and knowledge based arguments to

prove that the Commit operation is run on a device inside 𝑅in,

i.e., prove that all file fragments part of a correct proof must

have been queried to the commitment oracle Oincom.
(3) Prove that the extraction algorithm can efficiently reconstruct

𝜌 fraction of file blocks from the fragments in each of the 𝐼

snapshots {𝑆𝑖 }𝐼𝑖=1.
(4) Prove that the file can be reconstructed from any 𝜌 fraction.

The proof for part 4 follows directly from the properties of a

rate-𝜌 erasure code, so we do not expand on it further.

D.1 Part-two proof
For this part, we need to prove that the commitment oracle Oincom
receives all file fragments that are part of a correct PoRet com-

mitment, proof. (The latter is guaranteed by the part-one proof

provided later.)

We proceed in two steps. First we argue that the only way of

computing a valid PoRet commitment is by computing Commit on
valid file fragments. This relies on the KEV assumption (See Def. 2)

forGoAT-P and the ROM forGoAT-H. Next we argue that all calls to
Commit must take place from within the desired target region 𝑅in.

This relies on a timing based argument. Overall, this proves that if

correct PoRet commitments and proofs are computed, then the com-

mitment oracle (Oincom) records all the corresponding file fragments.

The proof for first step is as follows. Given a valid PoRet com-

mitment 𝐶𝝁 for SW-P, we need to prove the existence of a valid

pre-image 𝝁. But the KEVA directly offers this. We can use the

extractor provided by the assumption to efficiently extract 𝝁 for

every valid PoRet commitment.

The proof for the second part is given below. We provide two

arguments based on whether a high-resolution / low-resolution

anchor is used. We begin with the high resolution setting.

As noted before, we assume that the clock offsets of all anchors

are observed apriori and that clock drift is negligible. So we can

safely assume that the anchor timestamps lie inside the expected

interval, as otherwise the geo-commit verification would detect.

D.1.1 High-resolution anchors (𝑎 = 1). Fixing some notation,

assume that the storage provider P is at a location 𝐿𝑝 ∈𝑅target and
that the anchor assigned to 𝐿𝑝 is A, located at 𝐿1. Recall that the

target region inGoAT is a spherical circle centered at 𝐿1 with radius

𝛿 = Δ(𝐿𝑝 ,𝐿1) ·𝑆max/2, i.e., the region 𝑅in = (𝐿1;𝛿). Expanding the

radius further we have, 𝛿 = (𝑡com+rttmax (𝐿𝑝 ,𝐿1)+𝑡proc) · (𝑆max/2).
Recall that in the case of high-resolution anchors, the prover

computes one PoRet commitment per interval. We want to prove

that all the 𝐼 PoRet commitments are computed on some device in

𝑅in. Assume the contrary, i.e., say there exists a deviceDout situated

at 𝐿2 ∈𝑅out on which one of the PoRet commitments is computed.

By definition we have dist(𝐿1,𝐿2)>𝛿 .
Without loss of generality, assume that a copy of the encoded

file 𝐹 ∗ (generated during the setup experiment) exists in its entirety

in the memory of Dout, and therefore the time taken to compute

commitment on Dout is negligible, i.e., 𝑡
A
com = 0. We also set the

anchor processing time 𝑡Aproc=0.
The time taken to receive and respond from Dout during the

geo-commitment protocol with A is given by 𝑧=2dist(𝐿1,𝐿2)/𝑆max.

This is because in Fig. 8 we derive challenges from anchor signa-

tures, i.e., they arise at 𝐿1 and must reach 𝐿2. We can assume that

the adversary probability of guessing these challenges is negligible

(requires breaking selective unforgeability of the signature scheme

used by the anchor which happens with negligible probability).

Note in particular that this value is irrespective of any other

factors, e.g., the adversary’s strategy might be to place a device Din
exactly at the anchor location 𝐿1, and initiate the protocol from Din
with challenges forwarded to Dout. Moreover, we do not include

any startup cost when the adversary is sending messages between

devices, so 𝑡Astart=0.
For the geo-commitment verification to succeed, it must be that

𝑧 ≤Δ(𝐿𝑝 ,𝐿1). (See last step in Fig. 5 when 𝑎=1.)

But we have a contradiction, as 𝑧 must also satisfy 𝑧>2𝛿/𝑆max
because dist(𝐿1,𝐿2) > 𝛿 . Substituting for 𝛿 we get 𝑧 > Δ(𝐿𝑝 ,𝐿1).
Hence proved. □

D.1.2 Low-resolution anchors (𝑎>1) . The target region now

has a slightly larger radius, 𝛿 = (Γ/𝑎) ·𝑆max/2. The proof is very
similar to the previous case. The main difference now is that the

verification algorithm checks if 𝑎+1 anchor transcripts have the
same time. Therefore the prover is forced to execute 𝑎 PoRet com-

mitments sequentially.

Recall that for low-resolution anchors, the prover computes 𝑎

commitments every interval. Continuing in the same style as before,

assume for contradiction that the prover tries to execute all the

commitments in one of the intervals from Dout (Dout is setup in

the same fashion as before).

The time difference between last and first timestamp inNIGeoCommit
is given by 𝑧=2𝑎dist(𝐿1,𝐿2)/𝑆max. Note that we are counting time

from the moment anchor receives the first request to the moment

anchor sends out the last response.

To succeed in verification, it must be that 𝑧 ≤ Γ. Intuitively, this
corresponds to 𝑎+1 timestamps having the same time. But we have

a contradiction, as 𝑧 must also satisfy 𝑧 > 2𝑎𝛿/𝑆max, substituting

for 𝛿 we get 𝑧> Γ. Hence proved. □

Note on technique:One subtlety to note is that the following alter-
nate amplification method that computes PoRet commitment only

once does not work: 𝑝𝑖𝑛𝑔1, 𝑐𝑜𝑚1, 𝑝𝑖𝑛𝑔2, 𝑝𝑖𝑛𝑔3, ..., 𝑝𝑖𝑛𝑔𝑎 , 𝑝𝑖𝑛𝑔𝑎+1.
At first sight it might seem like a reasonable approach as it can also

fill up a large amount of time.

17

But the proof does not go through because the adversary can

decrease the time difference 𝑧 as follows. Place Din negligibly close

to A and initiate the protocol from it. Therefore, the time taken for

all consecutive pings is negligible. In this case, the timestamp differ-

ence will only be 𝑧=2dist(𝐿1,𝐿2)/𝑆max (incurred as the adversary

would have to forward challenges required to compute 𝑐𝑜𝑚1 from

Din to Dout).

D.2 Remaining proofs
We now prove the remaining parts, part-one and part-three.

D.2.1 Part-one proof. For this we reuse the proof for Theorem
4.2 in [40]. They provide a series of games that prove that, except

with negligible probability, no adversary ever causes a verifier to ac-

cept in a PoRet instance, except by responding with values

{
𝜇 𝑗

}
,𝜎

that are computed correctly (under the assumption that the com-

putational Diffie-Hellman problem is hard in bilinear groups). This

directly proves that if the challenger provides a challenge set S∗,
then the correctly computed output of SW.Prove and SW.Commit
containing

{
𝐶𝝁 ,𝝁,𝜎

}
must be accepted by the verification algo-

rithm SW.Verify. The only change we made is the extra vector

commitment. Assuming that the binding property of the vector

commitment scheme holds, this directly follows.

The remaining thing to be proved is that all the individual PoRet

commitments used to compute 𝐶 = 𝐶𝝁 are correctly computed.

Assume for contradiction that some of them are not computed

correctly. Observe that we derive random coefficients 𝑟 𝑗 from the

final PoRet commitment com𝑁 . These coefficients are used during

verification to compute𝐶 as follows,𝐶 =
∏𝑁

𝑗=1 (com𝑗)𝑟𝑁 . Under the

random oracle model, we can assume that the probability of prover

guessing these coefficients beforehand is negligible. Note the two

checks in SW.Verify: the commitment check (VC.Verify) and the

pairing equation check. Assuming that the latter succeeds, that is

the final commitment 𝐶 is the same as that computed by an honest

prover, then the only way prover can make VC.Verify succeed is by

guessing the random coefficients correctly (or) by breaking com-

mitment binding, both of which happen with negligible probability.

Grinding concerns are discussed in the main body.

D.2.2 Part-three proof. We re-purpose the extraction algorithm

provided in the proof of Theorem 4.3 in [40]. [40] provides an extrac-

tion algorithm that, given an adversary that answers 𝜖 fraction of

the queries correctly, can extract 𝜌 fraction of the encoded file blocks

provided that 𝜖−(𝜌𝑛)𝑘/(𝑛−𝑘+1)𝑘 is positive and non-negligible.

Recall that our extraction algorithm Extract is composed of

Extr.Derive and Extr.Assemble. And the extraction algorithm of

[40] already follows this additional structure we impose. Querying

the adversary corresponds to Extr.Derive and assembling the file

from query responses corresponds to Extr.Assemble.
The only change now is that extraction must succeed in every

interval, i.e., Odev .seenInROU(𝜇all𝑖
)=1 ∀𝑖 ∈ {1,2,...,𝐼 } must pass for

all the intervals. And the key question is how the new bandwidth

constraint 𝜙 and grinding attacks (discussed in Sec. 4) impact the

above theorem.

Recall that the size of the encoded file is |𝐹 ∗ |. Of this, due to

grinding, at least 𝑔 = (1− (1−2−𝜆)1/𝛼)1/𝑘 fraction is only stored

inside 𝑅in and hence only that is available for extraction (𝛼 is the

grinding cap). And further, upto 𝜙 bytes (the bandwidth cap) of the

𝑔-sized fraction can be downloaded, and is hence unavailable.

The idea in the proof of Theorem 4.3 of [40] is to query enough

times and use linear algebraic techniques to recover file blocks from

query responses. Queries aremade randomly. Three types of queries

are listed, and the fraction of type-1 queries (the useful ones that

help recover file blocks) is 𝜖−𝑤 where𝑤 = (𝜌𝑛)𝑘/(𝑛−𝑘+1)𝑘 (omit-

ting the negligible part of the equation caused by type-2 queries).

The extractor needs 𝜌𝑛≤𝑛 type-1 queries to succeed, which hap-

pens in 𝑂 (𝑛/(𝜖−𝑤)) time.

The maximum number of blocks unavailable inside 𝑅in is given

by 𝛾 = (𝑛𝜙|𝐹 ∗ |)+𝑛(1−𝑔). Therefore the extractor needs more type-1

queries to succeed, (𝜌𝑛+𝛾). Note that we assume if a query chal-

lenges a block that belongs to the unavailable portion in 𝑆1, a special

symbol “−1” is used in place of the file block, and the challenge

response is computed. And by extracting (𝜌𝑛+𝛾) blocks, we are
guaranteed to have at least 𝜌𝑛 actual file blocks (removing the −1’s).

The useful fraction of queries now is 𝜖 −𝑤 where 𝑤 = (𝜌𝑛 +
𝛾)𝑘/(𝑛−𝑘 +1)𝑘 . And assuming 𝜌𝑛+𝛾 ≤ 𝑛, extraction happens in

𝑂 (𝑛/(𝜖−𝑤)) time, i.e., same order as before. One constraint we get

is
𝜙

|𝐹 ∗ | ≤𝑔−𝜌 .
We want 𝜖−𝑤 to be positive and non-negligible. Therefore 𝑤

needs to be negligibly small. Meaning (𝜌 +𝛾/𝑛)𝑘 (or) (𝜌 + 𝜙

|𝐹 ∗ | +
1−𝑔)𝑘 needs to be negligible. As noted above, the number of in-

teractions required and the time to extract is the same order as in

[40]. □
Note that the above proof assumed that any 𝜌 fraction of blocks

can be used to extract the file 𝐹 . This is not true for fast-codes

(Sec. 3.5.2). But since we assume that the adversary only picks how

many blocks to delete, and does not resort to strategic deletion of

blocks, we can trivially extend the above proof to the setting of

fast-codes by assuming that the adversary deletes blocks randomly.

Please refer to Sec. 3.5.2 and App. B.2 for a discussion about this

assumption.

18

	Abstract
	1 Introduction
	1.1 The Anchor Model
	1.2 Proving Geolocation
	1.3 Geolocating Files: GoAT

	2 Preliminaries
	2.1 Authenticated time protocols
	2.2 Proof of Retrievability

	3 Formalizing Proofs of Geographic Retrievability
	3.1 Preliminaries
	3.2 Adversarial Model
	3.3 Completeness
	3.4 Soundness
	3.5 Practical model variants

	4 The GoAT protocol
	4.1 System Model
	4.2 Shacham-Waters scheme
	4.3 GoAT protocols
	4.4 GoAT security
	4.5 GoAT extensions

	5 Implementation and Evaluation
	5.1 Setup considerations
	5.2 Evaluation

	6 Related Work
	7 Conclusion
	References
	A Supporting TLS 1.2 anchors
	A.1 Low-resultion anchors
	A.2 Changes to Commit

	B Formalism Extensions
	B.1 Non-interactive Proofs of Geo-Retrievability
	B.2 Rational file retention

	C Practical considerations and Future work
	D Security Proofs
	D.1 Part-two proof
	D.2 Remaining proofs

